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Chapter 5

Feynman Rules

When the case of interacting fields are considered, the particles can be created, destroyed and scat-
tered. In essence this requires solving the coupled non-linear field equations for given conditions.
This is an extremely difficult problem which has only been solved in perturbation theory.

In the Heisenberg picture, which we have so far been using, this program is still very complex,
and it was decisive for the successful development of the theory to work instead in the interaction
picture. In section we write the S—matrix expansion derived in Chapter 3, in the interaction picture.
In section 5.2 we show how to use the Wick expansion to calculate S—matrix elements involving
scalars and spinors.

5.1 Interaction picture

This part is based in [3]. In the Schrodinger Picture (SP) the time dependence is carried by the
states according to the Scrodinger equation

#Sat)s = ifa, ths = Hla, f)s (5.1)
With the solution given in Eq. (3.1)
la,tys = U(t, t;)|a)s - (5.2)
where U is the unitary operator (see Eq. (3.5)
U=Ul(tt;) =e ) (5.3)
Given the state |a,t)g in the SP, in the Heisenberg picture (HP) we defined the state
@) = U'la)s(t) = la)s (5.4)
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Si O in an operator in the SP, the corresponding Heisenberg operator is defined as
Of(t) = UTO°U (5.5)

Hence, the transformation from HP to SP is unitary. At ¢t = t;, states and operators in the two
pictures are the same. We see from Eq. (5.4) that in the HP state vectors are constant in time, while
from Eq. (5.5) the Heisenberg operators evolve with time. Is convenient to keep the temporal label
in the Heisenberg states

@)y = |a,ti)u (5.6)
Eq. (5.5) ensures the invariance of matrix elements and commutation relations:

s(b](t) O% |a, t)s = s(b|(t) UOR (1)U |a, t)s = (b, t;|]O™(t)|a, t;)m (5.7)

(03, P%] =c= [O"(t), PM(t)] = ¢ (5.8)

where ¢ is a constant.
Differentiation of Eq. (5.5)

dtO (t)_<dtU)O U+U'O dtU
=iHU'OU + U'OPU (—iH)
=—i(O"H — HOY), (5.9)
gives the Heisenberg equation of motion
d g H
ZEO@:KMWW (5.10)

The interaction picture (IP) arises if the Hamiltonian is split into two parts
H = Hy+ H. (5.11)

In quantum field theory H; will describe the interaction between two fields, themselves described by
Hy
IP is related to the SP by the unitary transformation

U; = Uy(t, t;) = e Hilt=t) | (5.12)
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in this way,

la,t) = Udla, t)s , (5.13)
and

O'(t) = UloSU, . (5.14)

Thus the relation between IP and SP is similar to that between HP and SP, but with the unitary
transformation Uj involving only the non-interacting Hamiltonian H,. Note that both the vector
states as the operators in the IP are time-dependent.

Differentiating Eq. (5.14) gives the differential equation of motion operators in the IP:

d I _ I
@EO (t) = [O'(t), Ho| (5.15)

Substituting Eq. (5.13) into the Scrédinger Eq. (5.1), one obtains the equation of motion of state
vectors in the IP, If the system is described by a time-dependent state vector |®(t))

d
Z'E|CL, t>s :];IS|CL7 t>s

5 (Ul B(1))) =HUo (1)
j (%U) 9(1) -+ iUy (1)) =HOUp (1)

UoHo|®(t)) + iUO%@(t)) =H5U,| (1))
UoHo|®(1)) + iUo%@(t)) =(Ho + H7)Us|® (1))
iUy 1B(1)) =HUo (1)

T 00 =UoH5 U (1) (5.16)

d
i |(8)r = H ()1, (5.17)
where, as in Eq. (5.14)

H} = M=t et (t=t) (5.18)
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is the interaction Hamiltonian in the IP, with H? and Hj being the interaction and free-field Hamil-
tonian in the SP. From now on we shall omit the labels I, used in the equations to distinguish the
IP, as we shall be working exclusively in the IP in what follows.

Eq. (5.17) is a Scrodinger-like equation with the time dependent Hamiltonian H,(t). With the
interaction switched off (i.e. we put H; = 0), the state vector is constant in time. The interaction
leads to the state |®(¢)) changing with time. Given that the system is in a state |) at an initial time
t=t;, ie.

@) = [i) , (5.19)

the solution of Eq. (5.17) with this initial condition gives the state |®(¢)) of the system at any other
time ¢. It follows from the Hermicity of the operator H;(t) that the time development of the state
|®(¢)) according to Eq. (5.17) is a unitary transformation. Accordingly it preserves the normalization
of states

(®(t)|®(t)) = const. (5.20)

and, more generally, the scalar product.

Clearly the formalism which we are here developing is not appropriate for the description of
bound states but it is particularly suitable for scattering processes. In a collision processes the state
vector |i) will define an initial state, long before the scattering occurs (t; = —o0), by specifying a
definite number of particles, with definite properties and far apart from each other so that they do
not interact. (For example |i) would specify a definite number of electrons, and positrons with given
momenta and spins). In the scattering process, the particles will come close together, collide (i.e
interact) and fly apart gain. Eq. (5.17) determines the state |®(t)) into which the initial state

[B(—00)) = |i), (5.21)

evolves at t = 0o, long after the scattering is over and all particles are for apart again. The S—matrix
relates |P(00)) to ®(—o0) and is defined by

|®(00)) = S[®(—00)) = Sli), (5.22)
A collision can lead to many different final states |f), and all these possibilities are constrained
within |®(00)).
The transition probability is given by
[(Fl@(c0))|” = [{£IS))]* = 57, (5.23)

where Sy; is the corresponding probability amplitude.
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In order to calculate the S—matrix we must solve Eq. (5.17) for the initial condition (5.19). These
equations can be combined into the integral equation

d|®(t)) = —idt Hi(t)|P(t))

|®(t)) t
d|® =—1 dty Hi(t1)|P(ty
/| (1)) /Oo b Hi(1)|9 (1))

®(—00))

|@(1)) — |#(—00)) Z—i/ diy Hy(11)|®(t))

(5.24)
t
|D(t)) = |i) — z/ dty Hi(t1)|®(t1)) - (5.25)
In the limit ¢ — oo
|®(00)) = SOi) — z/ dty Hi(t1)|®(t1)) . (5.26)
where
SO =1, (5.27)
From Eq. (5.25) we can obtain |®(¢;)) at next order:
t1
|D(t1)) =|7) —z’/ dte Hy(to)|P(t2)) . (5.28)
This equation then can be solved iteratively. If H; is small we can solve this equation by iteration
t
|D(t)) = |i) + (—z)/ dt, Hy(ty)]i / dtl/ dte Hy(t1)H(to)|P(t2)) - (5.29)

In the limit ¢ — oo

D (1)) = [s<0>+(—z') /Oo dtlHI(tl)} / dtl/ dty Hy (1) H (1) B (t))

= (SO + 5W) s / dtl/ dty Hy (1) H(t2)|®(t)) (5.30)
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where
S — (—i) / ity Hy (1) (5.31)

The next order of Eq. (5.29) is

|D(t)) =|i) + (—1) /t dty Hy(t1)] / dtl/ dty Hy(ty)Hy(to)

—0o0

x {|¢>+(—¢) / ity Hy (t3)]i) + (—i)? / dt; / dty Hy(ts) Hp(t2)| @ (ts)) (5.32)

—0o0

1B(8)) =i} + (i) /t ity H (1) / dtl/ dty Hy (1) Hy (1))
/ it / dts / dts Hy (42 Hy () H (3)]i)
i /_ _dn /_ t; dts /_ t; dts /_ () i) H () H () 0(0) (539

In the limit ¢t — oo

|B(t)) = (S<0>+s<1>+s + 8B
/ dtl/ dtQ/ dtg/ dt4 H[ tl H](tg) H](tg)H[(t4)|q)(t4)> (534)

iy / Tty / "ty Hy (1) Hi (1)

=( / dt, / ! dts / dts Hy(ty)Hy(ts) Hy (t3) (5.35)

where

and so on we obtain the S—matrix

=) 5"

n=0

:Hiﬂ/w it /tl dtg.../tnl dt, Hy(t) Hy(t) - Hi(t). (5.36)

!
n: oo —o0 —o0
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If H; contains an even number of fermion factors, we can use the time-ordered product T{...} of n
factors to write this expression in the equivalent form

S =1+ i (_i!)n /OO dt; /OO dts ... /OO dt, T{H(t))Hi(ts) ... Hi(t,)}, (5.37)

n
n=1

In terms of the Hamiltonian density, we have

S=1+ i (=9)" / e /d4x1d4x2 coodrzy, T{H(x1)Hi(22) ... Hi(2n)}, (5.38)

n!

In the above perturbation formalism the states |i) and | f) are, as usual, eigenstates of the unperturbed
free-field Hamiltonian Hy. As such can be introduced inside the integrals

Spi =(f158)

:1+Z%/m/d4x1d4x2...d4xn IT{H () Ha () - Ho@)M ). (5.39)

n=1

For example, at first order
Sp =(f15")i)
—(f] =i [ o T )

5.2 Yukawa interaction

As a concrete example, we take a theory with a fermion field and scalar field, which interact via the
Yukawa interaction [1]:

Ling = —hpg. (5.41)

Let the quantum of the field ¢ be denoted by B, since the particle is a boson. The quanta of the
fermionic field ¢ will be called electrons. The mass of B is M, and the mass of the electron by
m. Suppose M > 2m, so that kinematically it is possible to have the B particle decay into an
electron-positron pair. The process is denoted by

B(k) — e (p) +e"(p), (5.42)
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where k, p, p’ are the 4-momenta of the particles.
For the interaction Hamiltonian we have

Hy=h:nbo: (5.43)

The term linear in the interaction Hamiltonian in the S—matrix. It is
S = —ip / dz g . (5.44)
SO = <ih [ dta s (B, + T + )05 +0-) (5.45)

Ling=—h: (Up+9_) (Vr +9-) (¢4 +¢-) :
=Py F Vb + V) by PP+ by
A U M VR P Sy VI e M
=1yt (5.46)

To check that only the ordered terms are different from zero we can analyse the full terms for
initial and final states defined as |i) = [0y, 0y, 1s) ¥ (f| = (L5, Ly, Og].

O Ing) oxln — 1,) (nglo ocin + 1) (5.47)

¢—|ng) ox|n + 1g) (nglo— oc{n — 14| (5.48)

Y lo mismo tendremos bien sea para un campo foténico o fermidnico.
El Langrangiano de interaccion de nuestro interés estd dado por

Lins = —hpi (5.49)

Que en términos de las componentes + y — de los campos se puede expresar como
De desarrollo del langrangiano en las componentes de los campos, vemaos qué términos con-
tribuyen al elemento de matriz
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Figure 5.1: Feynman diagrams for B — e*e™

(15, Ly, 0p|th101.04105, 0, 1) o< (255, 24, 04]05, 0y, 0) = O
(155 1y, 06004001 [0, 0, 1) o (25, 2, 06]035, 0, 26) = 0
(15, Ly, Ogt40— 4]0, 0, 1) o¢ (25, 0, 05|05, 0y, Og) = 0
(15,14, 0p|ts00-6_[0g, 0y, 1) o< (25, 0, 04[07, 0y, 25) = 0
(155 1y, 060016405, 0y, 1) o (0, 2, 04]035, 0, 0) = 0
(L, Ly, Ogth_thy 9]0, 0, 1) o (0, 24, 06|07, 0y, 24) = 0
(15, Ly, 0p|th_1b_ 4105, 0, 15) o< (055, 0y, 04]035, 0y, 0) # O
< w,0¢|¢ w ¢ \0¢70w,1¢> X <0wa0¢>0¢\0¢>0w’2¢> 0
The only term that contributes to the matrix element of the process is
—ih / d*zp__¢, . (5.50)

Let us define the one—particle states as

|B(p)) = \/gallm (5.51)

et (p,5) =\ - fI(P)|0), (5.52)



44 CHAPTER 5. FEYNMAN RULES

Using the commutation relations, our states are then normalized as

BB =" 5 - p)
55 =255 — o)
(.9l ) =68 - p) (5.53)
As established in Sec. 2.1, it is convenient to work in the discrete limit where (2.11)
5(0) = # (5.54)

Now we can write down the action of various field operators on different one particles states. Using
the Fourier decomposition of the scalar field in eq. (2.24), and taking into account that a,|0) = 0,
we have

- @B = [ e B9

1 : 1
_ d3 ~ —ipx_— =~ 0
/ p(2ﬂ_)3 /—2wp ap€ \/v ak| >

1 )
= [ &Pp——————e P [q, ,AT 0). 5.5
| P ) (5.55)
By usinbg the commutation relations in eq. (2.18) we have
0B (p—Kk) .
6.-)1B0) = [ ap P i) (5.56)
V2w,V
1 .
B(k)) = i 5.57
Similarly, we have
61 (@) B) =———e 7|0}
T = e
* 2ka
1 )
- — 5 —pz|()
e (8. 9) =Pl )
o - 1 — n,—ip'-x
Uy (2)e™(p,8)) =—====vs(P')e " "|0), (5.58)
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where wy, and E, represent the energies of the scalar and the electron for the 3-momenta in the
subscripts.
Similarly, for the adjoint operators

1

(B(k)[¢-(x) =(0] Wﬁ“”
— " 1 = ip-x
{e”(p,s)[¢_(x) =<0l\/mus(p)€
ro o 1 Vs leip'-cv
<€+(p ) S )|¢_(l‘) _<O| \/W s (p) ’ (559)

In the lowest order the only term which contributes to the matrix element is the term shown in
Eq. (5.50) The matrix element at first order in Eq. (5.40), between the initial and the final state is
then

S = =ih [ d'a (e (p)e" () [5-0-62| Bk (5.60)

Using Egs. (5.58)(5.59), we obtain

S =(=im(p)o (o) [t ﬁlEpV ml;p,v . (5.61)
Since
/ dig PRI (95 — p— ), (5.62)
we obtain
s = [ | k) ()] (5.63)
V2wV \/2E,V \/2E,V
Comparing with Eq. (3.24) we have therefore that the relativistic matrix element is
iMy; = (—ih)us(p)vs (P') (5.64)

and everything else is the history presented in Chapter 4.
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5.3 Scattering

From the previous calculation we have

S — % / e / drridzy . . dz, T{H(x1)Hi(z2) ... Hi(2n)} -

The relevant term for the scattering

e (p1) +e (p2) — e (p)) + e (p)

doidoy T{H(z))H (22)}

d4l‘1d4$2 T{ (Ewgb)m (Edjgb)aw}

d4l’1d4x2 : (EWb)zl (E¢¢)I2

—ih)? — —
SO [ [ dndtes ptagen) - o, (0.,
The Wick contraction can be written as:
¢(x1)B(x2) =(0[T{d(21)¢(2)}|0)
:lAF<J]1 — IL‘Q)
while the non-zero contribution from the fermion product is
(), (P)ay 1= 2 0 ()0 (w1)0 (2)" ()
5 (20T ()0 (1)0 ()
The S—-matrix element the reads

g _(=ih)?

(5.65)

(5.66)

(5.67)

(5.68)

(5.69)

i <_2 / / d'ard'ey{e (P))e” (P)liA R (e — 220 (w1)07 (22)u (1) (w2) e (Pr)e (p2))

-5 / / A’y i (a1 — w2) (e (P)e (p3) [ (22)07 (22) ()0 (z2)le” (P1)e (p2)

h
—! //d4x1d4x2/ ZAF( )e' e (o1—e2)

x (6_( Ve () [0 (21)d (@)%(éﬂl)%(b)l@ (P1)e” (p2))

(5.70)
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The two particle Fock state is, after proper normalization

e~ (pr)e (pa) Z%F(pz)ﬁ(pl)lm (5.71)
Therefore
3 3
U e)v (el (e (pa)) = [ e [ g e e
x f(k)f(kK')f(p2)f(p1)]0) (5.72)
42 (@) () e (pr)e (p2)) =—ei .
LA ! Y 2B,V \2E,,V
% [ua(pl)uﬁ(pz)e—im'wl6—@2'382 _ ua(p2)uﬂ(p1)€—ip2~x1e—im'rz] |O>
(5.73)
Following similar steps, we find
1 1

— (N = (I N B _
(© @ ORI 7 02) = ey

X (0] [ (9 (ph)e e e — e (ph ) (pl e Hh e
(5.74)

As expected, the final result can be written in term of three different factors: the momentum con-
servation, normalization, and the relativistic amplitude

1 1
5(2)=i(2ﬁ)454<§ pi= p’) [ — My, (5.75)
fi ) f fi
i=1,2 f=1,2 i=1,2 2BV =12 1/QE}V

where
Myi = (ih)? [a®(p) @’ () Ar(p1 — ph)u” (pr)u’ (p2) — @ ()" (Py) Ar(pr — pi)u” (Pr)u’ (p2)]
(5.76)
The two contributions are displayed in Fig. 5.2 Since
1
Ar(q) = (5.77)

¢ —m?
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e (p1) ) e (ph)
> I >
|
| B(p1 — p3)
|
|
= I =
)
e~ (p2) e (p})
e (p1) X e (p})
> I >
|
| B(p1 —p})
|
|
> I >
)
e (p») e (ph)

Figure 5.2: fermion scattering
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In the limit ¢ < m?

Ap = —% (5.78)
2
Myi =—5 [0 (p)u (pr)a” (ph)u’ (p2) — a” (ph)u (pr)a” (Ph)u” (p2)

::;—22 [a(p5)u(p1)u(py)u(p2) — u(py)u(p1)u(ps)u(p2)] (5.79)

For one interaction of type ¥/I't) we should have
Myi = Z—Z [a(p3)Tu(p1)u(p))'u(p2) — u(p})lu(p1)u(py)u(p2)] (5.80)

For the process

e (p) + vu(k) — p= () + ve(K) (5.81)

After the replacement Gr/v/2 = h%/m?, we have

1 1 1 1

S7) =i(2m)"6" (p1 + p2 — Py — 1h) My, (5.82)

V2E\V \2E,V \J2E\V \/2E}V

where

My = %u (03Tt (1), (0Tt (92) (5.83)

The corresponding Feynman diagram is shown in Fig. 5.3 From the standard model Lagrangian [1],
we know that

['=9"(1—1s) (5.84)
For p < M3, the analysis is similar to the previous one with
W@ )WY (2) =(O[T{W*(21)W" (22)}[0)

d4q g/U/ —1q-(r1—2x
%/ (27T)4M_3V6 ¢ (w1-22) (585)

Therefore we have
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e (p) T ve (1)

Y
Y

Y
Y

v, (p2) 2 o (ph)

Figure 5.3: scattering with four fermions

Myi= G—\/gﬂ (P5)7" (1 = 75)te (P1) W (P1) Y (1 = 75) s, (P2) (5.86)

We now must sqaure the scattering amplitude, M, and summing up over final spin states, and
averaging over the intial spin states, as we did in Eq. (4.8)

[M[? = 64 G (p1 - p2)(p1 - ) (5.87)
From Eq. (3.96)
2

ZTU) B 6471r2s (z - :lzg> IME? (5.88)

The center of mass (CM) frame is defined by the condition in Eq. (3.58):
P1+p2 =0 (5.89)

The §—function in Eq. (5.82)

0 (p1 + py = Py — ph) = 6 (p1 + P2 — Py — PL)S(EL + By — By — E3) (5.90)

implies

oM = —
Pi+P2— P — Py =0= {E/l_ E/Q (5.91)
1= —P2
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Moreover

In the CM frame

Therefore

In this case

From Eq. (5.94) we have

V's = E1 + E»

s=(Fy + E2)2

2
— (ot mi /o4 )

2
= (Vo= m +fot -, )

Ey = |p1|

2
5= (\/p%+m§+ !pll)

Vs =\/pi +m + [pi

2
(Vs —Ip1l)” =pi+m
3—2\/5P1+P% :P%+m

s — 2v/sp1 =m.

sS—m

Vs =E1 + E,
=FE1 + |pi

ol

(5.92)

(5.93)

(5.94)

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)
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Ey =\s — |pi]

_\/g_l_ﬂ

2y/s

25— s+m?

2y/s

_s—l—mz
= NG

Then, by using again eq. (5.94):

p1-p2 =E1Ey — p1 - P2

=F|p1| + pi
oot md) (s m2)
N 4s 4s
2
:%(s—l—mg—ks—mg)
1
25(3 —m)

As p? = p,> = 0, we have from §function

(p1 +p2)® =(p} + ph)°

(p1 + p2)* = (P} +ph)°
P} + 201 p2 + 03 =pi” + 20} - Py + 1y’
P34+ 2p1 - po =pi” + 20 - pl

/

m2 + 2p1 - po =m’, + 2p - ph

1
p’l-p’gzpl-pz—ﬁ(mi—mﬁ)

o = 5(s = m?)

Replacing back in Eq. (5.87) and then in Eq. (5.88) we have

do 1 [(s—m; 1 1
dao AC2 2 (s — m2) = (s — m?2
dQ  647%s (S —m?) 6 GFQ(S me)2(s )

(5.100)

(5.101)

(5.102)

(5.103)

(5.104)

(5.105)
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Note that o o s.

53

(5.106)

(5.107)
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