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Chapter 4

Two body decays

In this chapter we assume the Feynman rules for Fermions to carry out the calculation of the decay
of the standard model Higgs into a pair of fermions. In chaper 5 we will derive the corresponding
Feynman rules from the S–matrix expansion.

4.1 Particle decays

Particle decay [5] is the spontaneous process of one elementary particle transforming into other
elementary particles. During this process, an elementary particle becomes a different particle with
less mass and an intermediate particle such as W boson in muon decay.

For a particle of a mass M , the differential decay width according Eq. (3.36), is

dΓn =
(2π)4

2M
|M|2 dΦ(n)(P ; p1, p2, . . . , pn) (4.1)

The phase space can be determined from Eq. (3.35)

dΦ(n)(P ; p1, p2, . . . , pn) = δ4(P −
n
∑

i=1

pi)

(

n
∏

i=1

d3pi

(2π)32Ei

)

. (4.2)

We will keep the dΓ notation until all the integrals get evaluated.

4.2 Width decay

For the H → ff decay, Eq. (4.1) reads
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28 CHAPTER 4. TWO BODY DECAYS

dΓ =
1

2mA

1

4π2

d3p1

2E1

d3p2

2E2

δ(4)(pA − p1 − p2)|M(A → 1+2)|2

=
1

2mA

1

4π2

d3p1

2E1

1

2E2

δ(EA − E1 − E2)|M(A → 1+2)|2

=
1

2mA

1

4π2

p2
1dp1dΩcm

4E1E2

δ(EA − E1 − E2)|M(A → 1+2)|2, (4.3)

From the energy and momentum conservation, implicit in δ(4), we have p1 = p2. Therefore EA =
E1 + E2 = (m2

1 + p2
1)

1/2 + (m2
2 + p2

1)
1/2. In this way

dEA

dp1

= p1

(

1

E1

+
1

E2

)

. (4.4)

Replacing Eq.(4.4) back in Eq. (4.3), we have

dΓ =
1

2mA

1

4π2

p1dEAdΩ

4(E1 + E2)
δ(EA − E1 − E2)|M(A → 1+2)|2

=
1

2mA

1

4π2

p1dΩCM

4EA

|M(A → 1+2)|2

Finally,

dΓ

dΩCM

=
p1

32π2m2
A

|M(A → 1+2)|2 (4.5)

4.3 Feynman Rules and trace theorems

The interaction between the Higgs boson with fermions1 is given by the Yukawa interaction term [1]

LY ukawa = −Gf
(v + η)√

2
(eReL + eLeR)

= −Gfv√
2

ee − Gfη√
2

ee

Such as the electro has acquired a mass me = Gfν/
√

2. On the other hand the coupling to be
assigned to the process vertex is Gf

√
2 or me/v.

The decay process H → ff , is displayed in Fig. 4.1
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Figure 4.1: Diagrama de proceso H → ff

Figure 4.2: Reglas de Feynman del proceso H → ff

The Feynman rules, to be explained in Chapter 5 are indicated in Fig. 4.2.

In this way the scattering amplitude is

iM = −imf

(

GF

√
2
)1/2

u(s, p1)v(s′, p2). (4.6)

where p1, s, p2 y s′ are the momentum and spines of fermion and anti–fermion respectively.

1In this case we consider only electrons, by the formula is easy generalizable to other fermions
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Now, having into account that γ0† = γ0

(u(s, p1)v(s′, p2))
†

= v†(s′, p2)(u(s, p1))
†

= v†(s′, p2)(u
†(s, p1)γ

0)†

= v†(s′, p2)(γ
0†u(s, p1))

= v†(s′, p2)(γ
0u(s, p1))

= (v(s′, p2)u(s, p1)).

Squaring M, and summing over possible polarization states of final particles, we have

∑

s,s′

|M|2 = GF m2
f

√
2
∑

s,s′

(u(s, p1)v(s′, p2))(v(s′, p2)u(s, p1)). (4.7)

s The several sums in Ec. (4.7) can be calculated by expressing the products uv y vu en in terms of
their components, as follow

∑

s,s′

(u(s, p1)v(s′, p2))(v(s′, p2)u(s, p1))

=
∑

s,s′

(uα(s, p1)vα(s′, p2))(vβ(s′, p2)uβ(s, p1))

=
∑

s,s′

(uβ(s, p1)uα(s, p1))(vα(s′, p2)vβ(s′, p2))

=
∑

s

uβ(s, p1)uα(s, p1)
∑

s′

vα(s′, p2)vβ(s′, p2)

= (6 p1 + mf )βα(6 p2 − mf )αβ

= Tr[(6 p1 + mf )(6 p2 − mf )]. (4.8)

Taking into account that Tr[γν ] = 0, and from the commutation relations for γµ matrices

Tr[γµγν ] = tr[−γνγµ + 2gµν ]

= Tr[−γνγµ] + 2gµν Tr[1]

= Tr[−γµγν ] + 2gµν4 (Tr[AB] = Tr[BA])

Tr[γµγν ] = 4gµν .
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In this way

Tr[(6 p1 + mf )(6 p2 − mf )]

= Tr[(γµp
µ
1 + mf )(γνp

ν
2 − mf )]

= Tr[γµγνp
µ
1p

ν
2 − mfγµp

µ
1 + mfγνp

ν
2 − m2

f ]

= pµ
1p

ν
2tr[γµγν ] − 4m2

f

= 4gµνp
µ
1p

ν
2 − 4m2

f

= 4(p1 · p2 − m2
f ).

and
∑

s,s′

|M|2 = GF m2
f

√
2 · 4(p1 · p2 − m2

f ).

Since E1 = E2 = MH/2, and p1 = −p2, the term p1 · p2 − m2
f can be written as

p1 · p2 − m2
f = E1E2 − p1 · p2 − m2

f

= E2
1 + p2

1 − m2
f

= E2
1 + (E2

1 − m2
f ) − m2

f

= 2(E2
1 − m2

f )

= 2

(

M2
H

4
− m2

f

)

=
M2

H

2

(

1 − 4
m2

f

M2
H

)

Therefore, the scattering amplitude is

∑

s,s′

|M|2 = 2GF M2
Hm2

f

√
2

(

1 − 4
m2

f

M2
H

)

. (4.9)

On the other hand from the kinematics of the problem we have p2
1 = p2

2 y EA = E1 + E2. In this
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way

p2
1 = p2

2 = E2
2 − m2

2

= (EA − E1)
2 − m2

2

= E2
A − 2EAE1 + E2

1 − m2
2

= E2
A − 2EAE1 + p2

1 + m2
1 − m2

2

0 = E2
A − 2EAE1 + m2

1 − m2
2

E1 =
1

2EA

(

E2
A + m2

1 − m2
2

)

(p2
1 + m2

1)
1/2 =

1

2EA

(

E2
A + m2

1 − m2
2

)

p2
1 =

1

4E2
A

(

E2
A + m2

1 − m2
2

)2 − m2
1.

In the case m1 = m2 we have

p2
1 =

1

4
E2

A − m2
1

=
1

4
E2

A

(

1 − m2
1

E2
A

)

p1 =
1

2
EA

(

1 − 4
m2

1

E2
A

)1/2

.

Setting EA = mA = MH , and m1 = mf , we have

p1 =
1

2
MH

(

1 − 4
m2

f

M2
H

)1/2

. (4.10)

Similarly, setting mA → MH in Eq. (4.5), and replacing Eqs. (4.9), and (4.10) in Eq. (4.5), we
obtain

dΓ

dΩCM

=
1

32π2M2
H

1

2
MH

(

1 − 4
m2

f

M2
H

)1/2

2GF M2
Hm2

f

√
2

(

1 − 4
m2

f

M2
H

)

=
MHm2

fGF

16π2
√

2

(

1 − 4
m2

f

M2
H

)3/2

.

After the integration in dΩCM we have

ΓH→ff =
MHm2

fGF

4π
√

2

(

1 − 4
m2

f

M2
H

)3/2

, (4.11)
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In the limit mf ≪ MH this expression reduces to

ΓH→ff =
MHm2

fGF

4π
√

2
. (4.12)
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