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Chapter 4

Two body decays

In this chapter we assume the Feynman rules for Fermions to carry out the calculation of the decay
of the standard model Higgs into a pair of fermions. In chaper 5 we will derive the corresponding
Feynman rules from the S—matrix expansion.

4.1 Particle decays

Particle decay [5] is the spontaneous process of one elementary particle transforming into other
elementary particles. During this process, an elementary particle becomes a different particle with
less mass and an intermediate particle such as W boson in muon decay.

For a particle of a mass M, the differential decay width according Eq. (3.36), is

(2)*

Wi IM[*d®™ (P;p1,pa, ..., pn) (4.1)

ar, =

The phase space can be determined from Eq. (3.35)

n)( p. —54p_ A n

=1

We will keep the dI' notation until all the integrals get evaluated.

4.2 Width decay

For the H — ff decay, Eq. (4.1) reads
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11 d3p1d3p25(4)
2m 4 42 2F; 2F,
1 1.d%y 1
" 2my4n? 2F, 2F,
11 pldpidQepn
2madn?  AE E,

dr (pa — p1 — p2)|M(A — 1+2)]

(B4 — Ei — E))|M(A — 1+2)]?

§(Eq — By — Ep)|M(A — 142) %, (4.3)

From the energy and momentum conservation, implicit in 6, we have p; = p,. Therefore £, =
By + Ey = (m? 4+ p?)Y2 4+ (m? + p?)Y/2. In this way

dE 4 11
= —+ = . 4.4
dp, b1 <E1 * E2> ( )
Replacing Eq.(4.4) back in Eq. (4.3), we have

1 1 pidELdQ

dr = — S(Ey—E, - E 1+2)|?
2my A2 A(Ey + Es) (Ea ' 2)M(A = 1+2)
1 1 pldQCM 2
= — 1+2
9madn?  4E 4 M(A = 142)
Finally,
dF P1

dQecm 327r2mf4|/\/l<'/4 +2) (4.5)

4.3 Feynman Rules and trace theorems
The interaction between the Higgs boson with fermions' is given by the Yukawa interaction term [I]

v+n),_ _
£Yukawa = _Gf( \/577) (eReL + eLeR)

G G

V2 V2

Such as the electro has acquired a mass m. = Gyv/ V2. On the other hand the coupling to be
assigned to the process vertex is G f\/§ or me/v.
The decay process H — ff, is displayed in Fig. 4.1
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Figure 4.2: Reglas de Feynman del proceso H — ff

The Feynman rules, to be explained in Chapter 5 are indicated in Fig. 4.2.

In this way the scattering amplitude is
M= —im; (Gpv2) ’
iM=—ims (GpV2 u(s,p1)v(s’, pa). (4.6)

where py, s, p2 y 8 are the momentum and spines of fermion and anti—fermion respectively.

'In this case we consider only electrons, by the formula is easy generalizable to other fermions
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Now, having into account that fyOT = A0

(@(s, pr)v(s’, p2))’
s, p2)(u(s, p1)

(w

/ (u (Spl
(
(

<
"

<

(s',p2) )f
(s, pa) ")
= ol (s', p2) (1T u(s, p1))
f(s',p2) (7 u(s, p1))
= (0(s', p2)u(s, p1))-

<

Squaring M, and summing over possible polarization states of final particles, we have
Z M? = Gme\/_Z (s, p1)v(s", p2)) (U(s", p2)u(s, p1)). (4.7)

s The several sums in Ec. (4.7) can be calculated by expressing the products wv y Tu en in terms of
their components, as follow

> (@(s, p)ols’ p2)) (@', pa)uls, pr))

8,8’

= 5" (@als, p1)vals', p2)) (@5 (S', p2)us(s, pr))

s,s’

= (s (5,15, 2)) (vl 5", P2)Ta(5', )

8,8’

= Zuﬁ $,01)Ua(8,01) > Vals, p2)s(s', p2)

S/

= (ﬁl +mf)gal o2 — Mmyf)ap
= Tr[( 1 +mg)(p2 —my)]. (4.8)

Taking into account that Tr[y,] = 0, and from the commutation relations for v, matrices

Trlyv, ] = tr[=vv. + 29"

= Tr[—v,7,] + 2¢" Tr[1]

= Tr[—v,7] + 2¢"4 (Tr[AB] = Tr[BA])
Tr[y, 7] = 4¢".
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In this way

Te[( 1 +my) (o2 — my)]

= Tr[(yupt + myp) (vph — my)]

= Tr[y, P\ s — mpyup) + msywph — mj)
= pipstriyon] — 4mj

= 4g,,p\'Py — 4m}

=4(p1-p2 — m?c)

and

D IMP = Grmiv2-dlps - py — m3).

s,s’

Since Ey = Ey = My /2, and p; = —pa, the term p;y - po — mfc can be written as

Pl'Pz—m?=E1E2—P1'p2—mfc
= E} +pi —mj
= E} + (Ef —m}) —m}

Therefore, the scattering amplitude is

m2
> IMPP = 2GpMEimiV2 (1 - 4M—§) . (4.9)
s,s’ H

On the other hand from the kinematics of the problem we have p? = p2 y E4 = E) + F,. In this
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way
Pl =p; = B —mj
= (EA—E1)2 —m%
= FE% —2E4E, + E} —m}
= F% - 2E4E, +pi +m? —mj
0= E% —2E4E; +mi —mj

1
1
0+ = S (B = )
1
f = o (5 mi — ) — i
A
In the case m; = my we have
P = B4 —mi
1 2
=B (1- 3
4 E%
1 mg 1/2
P = 354 (1433 )
Setting £4 = ma = My, and m; = my, we have
1 m?c 1/2
pP1 = §MH 1 - 4M_12{ . (4.10)

Similarly, setting my4 — My in Eq. (4.5), and replacing Eqs. (4.9), and (4.10) in Eq. (4.5), we
obtain

/2 2
dr 1 1 m?c ! m

— My (1-—4—L) o2GMZm2V2 (1 —4—L
dQcy  32m2M% 21 ( ) G Migmy ( Mg)

_ MymiGr (1 m§)3/2
16722

After the integration in dQ2cy we have

(4.11)
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In the limit m; < My this expression reduces to

e
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(4.12)
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