


Chapter 2

Second quantization

This part is based in some topics of chapters 4-6 of [2].

2.1 Fock space for real scalar fields

We have already seen in Chapter 1 of [1] that the most general solution to the Klein-Gordon equation
is

ape P 4 a;eip“'m) (2.1)

0= 3 JoErs

with p® = E,. The factor v/2E, is a convenient choice of normalization of the coefficients a,, which
guarantees the proper harmonic oscillator Hamiltonian

H = Z Eanajan (2.2)

In the continuum

(%)32 - (2;)3 Yy - /d3p (2.3)

3 \/z
o= | ey

(ape™"" + a;eip'””) (2.4)
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The basic principle of canonical quantization is to promote the field ¢ and its conjugate momentum
to operators, and to impose the equal time commutation relation

(6.3, (1, y)| = 6°(x,)

[6(t.3), 6(t,y)| = [Tt %), it y)| = 0. (25)

Promoting the real field ¢ to a hermitian operator means to promote a, to an operator; thus

n \/z -~ _—ipx -~ Jip-x
o(t,x) = /d?’pm (@pe” ™" +ale™™) (2.6)

Using these expressions it is easy to verify that, in terms of a@p, ?i;f), the commutation relation (2.5)
reads

SN o\ ?

[ap,al] = <f) s (p —q)

[ap, ag] = [&L,am =0. (2.7)
Comparing with the commutation relation of harmonic oscillator studied before []

[anaain] = 5n,m
[Gn, dm] = [al,al,] =0, (2.8)

n’ m

we get that in the continuum limit

<£)3 5o — 0@ (p— q) (2.9)

In particular, this implies that

2n)26®)(p=0) = L’ =V (2.10)
5V
5%(0) = - (2.11)

This expression can be also obtained from the definition

5 (p) = Jim ( (2;)3 /V d%e—ir’*) : (2.12)
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before taking the limit to infinity.

Note that the commutation relations for the real scalar field in (2.7) are equivalent to that of a
collection of harmonic oscillators, with one oscillator for each value of the momentum p.

We can now construct the Fock space following the standard procedure for the harmonic oscillator:
we interpret ap as destruction operators and a; as creation operators, and we define a vacuum state
|0) as the state annihilated by all destruction operators, so for all p

@pl0) = 0. (2.13)

We normalize the vacuum with (0]0) = 1. The generic state of the Fock space is obtained acting on
the vacuum with the creation operators,

1y, Pa) = (2E,,) 7 (2B,,) 24l .G (0). (2.14)

P1°

The factors (2Ep1)1/ ? are a convenient choice of normalization. In particular, the one-particle states
are

p) = (2E,)*a}[0). (2.15)
From the commutations relations and eq. (2.7) we find that

<p1|p2> = (2Ep1)1/2 (QEpz)l/g <0|/dp1ap2 |O>
(2Ep,)"? (2Ep,) "2 (0] [ap,. ab,] 10)

21

3
= 25" @) () 0901~ o)

9 3
25, (%) 6901 - po) 2.16)

The factors (2Ep)1/ % in eq. (2.15) have been chosen so that in the above product the combination
Epé(?’)(p — q) appears, which is Lorentz invariant. To see this perform a boost along z—axis. Since
the transverse components of the momentum are no affected we must consider only E,d(p. — k.).
Use the form of the Lorentz transformation of Ey, p., together with the property of the Dirac delta
5(f(x)) = 6(x — w0)/ f(x0).

However, because eq. (2.6) is already in the continuum, the v/L factor must not appear. We can
reabsorb this in the ap,ai) definition, so that

N 1 ~ _—ipx ~t ip-x
o(t,x) :/d?’pW (ape™™ +aLep ). (2.17)

V2E,
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The new commutation relations are

[@p, al] = (27)° 6P (p — q)
(ap, ag] = [EL\L,&\L] =0, (2.18)

and eq. (2.16) is now

(P1]p2) = 2By, (21) 6@ (b1 — po). (2.19)

Using (2.9) we have in a finite box

(P1|p2) :2Ep1L35p1,p2

=2E,,Vip, ps (2.20)
If we define
—~ 1 . .
t,x) = | @p——o= (Gpe 7T +al ") . 2.21
¢( ) p\/m( P o] ) ( )

Then, the new commutation relations are

[@p,al] = 6% (p—q)
0,

[ap, 4q] = [al,al] = (2.22)
It is convinient to define:
0(z) = 64 (2) + 6 () (2.23)
where
o _ 3 1 ~ _ipx
oulw) = [ TRtV
I — 3 1 ~t Jip-x
¢_(x) / p(27r)3 _zEpape : (2.24)

We define the Fock one-particle state as

|B(p)) =Aa}|0)
(B(p)| =(0fap A” (2.25)
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(B(p)|B(p')) =A%(0[apal, |0)
2(O|apa r—a /ap|0>

= A%(0|[ap, al,]|0)

=A*(2m)%6® (p — p) (2.26)
As we fix the normalization as

1

A= (2.27)

so that
BR) = = (p)) (2.28)

2.2 Quantization of Fermions

The solutions to the free Dirac equations are

1
2F,
1

—ip-x

77ZJpa1rticle (:C) =

us(p)e

<

DT

77Z)antiparticle ({L’) - Vs (p)e

2E,V
(2.29)

In a similarly way to eq. (2.23), the most general free particle solution to Dirac equation is

P(x) = P (x) + () (2.30)

—zp-x

_ 3
_/dp om) 1/2Ep 2 Ji()

s=1,2

_ 3 T sz
—/dp P —2Ep > fip (2.31)

s=1,2
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