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Chapter 2

Second quantization

This part is based in some topics of chapters 4-6 of [2].

2.1 Fock space for real scalar fields

We have already seen in Chapter 1 of [1] that the most general solution to the Klein–Gordon equation
is

φ(t,x) =
∑

n

1√
2EnL3

(
ane

−ipn·x + a∗
n
eipn·x

)
(2.1)

with p0 = En. The factor
√

2En is a convenient choice of normalization of the coefficients an which
guarantees the proper harmonic oscillator Hamiltonian

H =
∑

n

Ena
∗
n
an (2.2)

In the continuum

(
2π

L

)3 ∑

n

=
(2π)3

V

∑

n

→
∫
d3p (2.3)

φ(t,x) =

∫
d3p

√
L

(2π)3
√

2Ep

(
ape

−ip·x + a∗
p
eip·x

)
(2.4)
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4 CHAPTER 2. SECOND QUANTIZATION

The basic principle of canonical quantization is to promote the field φ and its conjugate momentum
to operators, and to impose the equal time commutation relation

[
φ̂(t,x), Π̂(t,y)

]
= δ3(x,y)

[
φ̂(t,x), φ̂(t,y)

]
=

[
Π̂(t,x), Π̂(t,y)

]
= 0 . (2.5)

Promoting the real field φ to a hermitian operator means to promote ap to an operator; thus

φ̂(t,x) =

∫
d3p

√
L

(2π)3
√

2Ep

(
âpe

−ip·x + â†
p
eip·x

)
(2.6)

Using these expressions it is easy to verify that, in terms of âp, â†
p
, the commutation relation (2.5)

reads

[
âp, â

†
q

]
=

(
2π

L

)3

δ(3)(p − q)

[âp, âq] =
[
â†
p
, â†

q

]
= 0 . (2.7)

Comparing with the commutation relation of harmonic oscillator studied before []

[
ân, â

†
m

]
= δn,m

[ân, âm] =
[
â†
n
, â†

m

]
= 0 , (2.8)

we get that in the continuum limit

(
L

2π

)3

δp,q → δ(3)(p − q) (2.9)

In particular, this implies that

(2π)3δ(3)(p = 0) → L3 = V (2.10)

δ3(0) =
V

(2π)3
. (2.11)

This expression can be also obtained from the definition

δ3(p) = lim
V →∞

(
1

(2π)3

∫

V

d3x e−ip·x

)
, (2.12)
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before taking the limit to infinity.
Note that the commutation relations for the real scalar field in (2.7) are equivalent to that of a

collection of harmonic oscillators, with one oscillator for each value of the momentum p.
We can now construct the Fock space following the standard procedure for the harmonic oscillator:

we interpret âp as destruction operators and â†
p

as creation operators, and we define a vacuum state
|0〉 as the state annihilated by all destruction operators, so for all p

âp|0〉 = 0 . (2.13)

We normalize the vacuum with 〈0|0〉 = 1. The generic state of the Fock space is obtained acting on
the vacuum with the creation operators,

|p1, . . . ,pn〉 ≡ (2Ep1
)1/2 . . . (2Epn

)1/2 â†
p1
. . . â†

pn

|0〉 . (2.14)

The factors (2Ep1
)1/2 are a convenient choice of normalization. In particular, the one-particle states

are

|p〉 = (2Ep)1/2 â†
p
|0〉 . (2.15)

From the commutations relations and eq. (2.7) we find that

〈p1|p2〉 = (2Ep1
)1/2 (2Ep2

)1/2 〈0|âp1
â†
p2
|0〉

= (2Ep1
)1/2 (2Ep2

)1/2 〈0|
[
âp1

, â†
p2

]
|0〉

= (2Ep1
)1/2 (2Ep2

)1/2

(
2π

L

)3

δ(3)(p1 − p2)

=2Ep1

(
2π

L

)3

δ(3)(p1 − p2) . (2.16)

The factors (2Ep)1/2 in eq. (2.15) have been chosen so that in the above product the combination
Epδ

(3)(p − q) appears, which is Lorentz invariant. To see this perform a boost along z–axis. Since
the transverse components of the momentum are no affected we must consider only Epδ(pz − kz).
Use the form of the Lorentz transformation of Ep, pz, together with the property of the Dirac delta
δ(f(x)) = δ(x− x0)/f

′(x0).
However, because eq. (2.6) is already in the continuum, the

√
L factor must not appear. We can

reabsorb this in the âp, â
†
p

definition, so that

φ̂(t,x) =

∫
d3p

1

(2π)3
√

2Ep

(
âpe

−ip·x + â†
p
eip·x

)
. (2.17)



6 CHAPTER 2. SECOND QUANTIZATION

The new commutation relations are

[
âp, â

†
q

]
= (2π)3 δ(3)(p − q)

[âp, âq] =
[
â†
p
, â†

q

]
= 0 , (2.18)

and eq. (2.16) is now

〈p1|p2〉 = 2Ep1
(2π)3 δ(3)(p1 − p2) . (2.19)

Using (2.9) we have in a finite box

〈p1|p2〉 =2Ep1
L3δp1,p2

=2Ep1
V δp1,p2

(2.20)

If we define

φ̂(t,x) =

∫
d3p

1√
(2π)32Ep

(
âpe

−ip·x + â†
p
eip·x

)
. (2.21)

Then, the new commutation relations are

[
âp, â

†
q

]
= δ(3)(p − q)

[âp, âq] =
[
â†
p
, â†

q

]
= 0 , (2.22)

It is convinient to define:

φ̂(x) = φ̂+(x) + φ̂−(x) (2.23)

where

φ̂+(x) =

∫
d3p

1

(2π)3
√

2Ep

âpe
−ip·x

φ̂−(x) =

∫
d3p

1

(2π)3
√

2Ep

â†
p
eip·x . (2.24)

We define the Fock one-particle state as

|B(p)〉 =A â†
p
|0〉

〈B(p)| =〈0|âpA
∗ (2.25)
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〈B(p)|B(p′)〉 =A2〈0|âpâ
†
p′|0〉

=A2〈0|âpâ
†
p′ − â†

p′ âp|0〉
=A2〈0|[âp, â

†
p′ ]|0〉

=A2(2π)3δ(3)(p − p′) (2.26)

As we fix the normalization as

A =
1

V
(2.27)

so that

|B(p)〉 =
1√
V
â†(p)|0〉 (2.28)

2.2 Quantization of Fermions

The solutions to the free Dirac equations are

ψparticle(x) =
1√

2EpV
us(p)e−ip·x

ψantiparticle(x) =
1√

2EpV
vs(p)eip·x

(2.29)

In a similarly way to eq. (2.23), the most general free particle solution to Dirac equation is

ψ̂(x) = ψ̂+(x) + ψ̂−(x) (2.30)

ψ̂+(x) =

∫
d3p

1

(2π)3
√

2Ep

∑

s=1,2

f̂s(p)us(p)e−ip·x

ψ̂−(x) =

∫
d3p

1

(2π)3
√

2Ep

∑

s=1,2

f̂ †
s (p)vs(p)eip·x (2.31)
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