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Chapter 1

Introduction

The confinement of charge carriers in quantum heterostructures through parabolic or semiparabolic
potentials has been described in a relatively large number of reports during the two last decades.
We can mention here, as examples, some initial works related to the study of electronic, optic
and polaronic properties [1, 2, 3, 4, 5] and the calculation of the binding energies of hydrogenic
impurities in quantum wells [6]. We can also find more recently works that investigate the specific
characteristics of the optical properties in parabolic confined systems [7, 8, 9, 10, 11, 12].

The fabrication of quantum dots (QD) and quantum rings (QR) semiconductors has come true by
using self-assembly techniques in crystal growth (see, for example, reference [13]). These two types
of systems turn out be of great interest due to the promising prospects of its application in the
design and production of optoelectronic devices [14, 15, 16, 17]. Furthermore, going beyond the
case of an isolated nanostructure, we have the possibility of producing artificial molecules from QDs
or QRs coupling, which becomes a very attractive and promising option in the field of quantum
information processing [18], also in the obtention of devices operating in the frequency range of the
order of terahertz [19].

By an extension of the classical theory of Balian and Bloch, Tatievski and collaborators [20] have
determined the structure of electron shells associated with the motion in closed orbits for mesoscopic
systems such as atomic clusters, discs and rings. They have obtained analytical expressions for the
density of states in the shell structure, which is a very useful tool to calculate the fluctuations in
the binding energies and ionization potentials. Moreover, Tan and Inkson [21] have used an exactly
soluble to study the magnetization and the existence of persistent currents of electrons confined in
two-dimensional mesoscopic rings and dots, which enables the investigation of these properties over
a wide range of devices geometries containing a large number of electrons. They showed that in
the limit of weak magnetic field, the persistent current is simply proportional to the magnetization,
presenting oscillations of Aharonov-Bohm type. In the same direction, Avishai and Kohmoto have
investigated the electronic currents in equilibrium and the magnetization in the case of an ideal
two-dimensional disk under the influence of a strong magnetic field [22].

There exists a significant number of research reports related to the linear and nonlinear optical
response in QDs with parabolic confinement. To cite only a few examples we mention here the
work of the references [23, 24, 25, 26, 27]. Furthermore, there is a particular type of quasi-zero-
dimensional system quantum known as quantum disk (QDC) – or shaped disc quantum dot – which
has attracted some attention to study this type of optical properties [28, 29, 30, 31, 32]. This is
precisely the type of system being studied in this thesis.

We will here dedicate to investigate the electronic states in quantum disks which are under the
combined influence of two different types of confinement profiles: one parabolic type and one
originating from the action of a potential that depends inversely on the square of the distance.
All this is complemented by the presence of an externally applied magnetic field. It must be
said that the inverse square potential appeared as a model for the interaction between particles
in the quantum problem of N particles in a parabolic potential and with an additional magnetic
field [33]. We will discuss how the inclusion of this kind of potential along with the other two
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Chapter 1. Introduction 2

mentioned fields can serve as a fairly direct model for charge carriers states confined in a two-
dimensional semiconductor quantum ring. We will demonstrate that the corresponding electronic
eigenstates from the Schrödinger like effective mass equation in the conduction band can be obtained
analytically. Then, with the use of these states so determined we will calculate the linear and
nonlinear contributions to the optical absorption coefficients and relative change of refraction index
on a system with the above geometry, based on GaAs. Is appropriate to mention that this issue
has attracted significant attention very recently. this is confirmed with the almost simultaneous
publication of two original articles in international indexed journals together with our [31, 32].

To provide an adequate theoretical environment to our work, Chapter 2 of this thesis is dedicated
to presenting a fairly detailed derivation of the expressions for the optical coefficients of our work
in the framework of the density matrix theory. The following chapter will contain the details of the
solution of the Schrödinger like effective mass problem in the specific system under study and the
presentation and discussion of the results for the considered linear and nonlinear optical properties.
Finally, Chapter 4 presents the findings of the project.



Chapter 2

Preliminaries

2.1 Introduction

The general theory of the nonlinear optical response must be adapted to the situation of low dimen-
sional systems in which the spectrum of energy states may have a contribution of discrete energies
apart from the continuous states associated with subbands corresponding to free movements with
effective mass along one or two dimensions. The situation in which we have a completely discrete
spectrum is the quantum dot case, which is analogous to the resulting atomic case. The works of
Rosencher and Bois [34] and Ahn and Chuang [35] were those who entered the formalism developed
in the 1960 years to the situation of systems as we are concerned.

Now will present a detailed derivation of the first and third-order absorption coefficients as well
as the first and thir-order change in the refractive index coefficient in the scheme of reference [35]
which was developed for the case of a quantum well. However, the scheme is directly extended to
quantum wires and dots.

2.2 Density Matrix Equations

Lets consider a system in the presence of an optical radiation of frequency ω with polarization along
the z-axis. Lets denote ρ̂, Ĥ0, M̂ and E(t) as the density matrix for one electron, the unperturbed
Hamiltonian of the system, the electric dipole operator and the intensity of the electric field of the
optical radiation of frequency ω respectively.

The density matrix equation for one electron with intraband relaxation is given by

∂ρ̂

∂t
=

1

i~
[Ĥ0 − M̂Ẽ(t), ρ]− 1

2
[Γ̂(ρ̂− ρ̂(0)) + (ρ̂− ρ̂(0))Γ̂], (2.1)

where ρ̂(0) is the unperturbed density matrix and Γ̂ is a phenomenological operator responsible of
the damping due to electron-phonon, electron-electron and other interaction processes. We assume
that Γ̂ is a diagonal matrix and its element Γmm is the inverse of the relaxing time for the estate
|m⟩. To simplify the analysis we focus on two-level systems (|1⟩, |2⟩).

The incident monochromatic field is defined as

E(t) = Re(E0e
−iωt) =

1

2
E0e

−iωt +
1

2
E0e

iωt = Ẽe−iωt + Ẽeiωt. (2.2)

The diagonal elements of the Γ̂ operator are given by

⟨1|Γ̂|1⟩ = γ11 = 1/τ1 , ⟨2|Γ̂|2⟩ = γ22 = 1/τ2. (2.3)

3



Chapter 2. Preliminaries 4

We can solve equation (1) through a perturbative series in ρ̂ as

ρ̂(t) =
∑
n

ρ̂(n)(t). (2.4)

In thermal equilibrium, the density matrix ρ̂(0) is a diagonal matrix where its diagonal elements

are the superficial thermal population. Lets call ρ
(n)
11 = ⟨1|ρ̂|1⟩, ρ(n)12 = ⟨1|ρ̂|2⟩ , ρ(n)21 = ⟨2|ρ̂|1⟩, and

ρ
(n)
22 = ⟨2|ρ̂|2⟩. The matrix ρ̂ has the hermiticity property ρ12(t) = ρ∗21(t).

Replacing equation (4) in equation (1), we obtain

∑
n

∂ρ̂

∂t
=

1

i~
∑
n

[
(Ĥ0 − M̂E(t))ρ̂(n) − ρ̂(n)(Ĥ0 − M̂E(t))

]
−1

2

∑
n

[Γ̂(ρ̂(n) − ρ̂(0)) + (ρ̂(n) − ρ̂(0))Γ̂]. (2.5)

Note that we can write

∑
n

ρ̂(n) − ρ̂(0) =
∑
n

ρ̂(n+1), (2.6)

then,

∑
n

∂ρ̂

∂t
=

1

i~
∑
n

[
(Ĥ0 − M̂E(t))ρ̂(n) − ρ̂(n)(Ĥ0 − M̂E(t))

]
−1

2

[
Γ̂

(∑
n

ρ̂(n+1)

)
+

(∑
n

ρ̂(n+1)

)
Γ̂

]
. (2.7)

With the last expression we can calculate ⟨2|∂ρ̂∂t |1⟩, so

∑
n

∂ρ
(n)
21

∂t
=

1

i~
∑
n

[
⟨2|[Ĥ0 − M̂E(t)]ρ̂(n)|1⟩ − ⟨2|ρ̂(n)[Ĥ0 − M̂E(t)]|1⟩

]
−1

2

∑
n

[⟨2|Γ̂ρ̂(n+1)|1⟩+ ⟨2|ρ̂(n+1)Γ̂|1⟩]. (2.8)

Having present that Ĥ0|m⟩ = Em|m⟩, we have

∑
n

∂ρ
(n)
21

∂t
=

1

i~
∑
n

[
E2⟨2|ρ̂(n)|1⟩ − ⟨2|M̂ρ̂(n)|1⟩E(t)− E1⟨2|ρ̂(n)|1⟩+ ⟨2|ρ̂(n)M̂ |1⟩E(t)

]
−1

2

∑
n

[⟨2|Γ̂ρ̂(n+1)|1⟩+ ⟨2|ρ̂(n+1)Γ̂|1⟩]. (2.9)

Introducing the completeness relation given by,

|1⟩⟨1|+ |2⟩⟨2| = 1, (2.10)
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we obtain

∑
n

∂ρ
(n)
21

∂t
=

1

i~
∑
n

[
(E2 − E1)ρ

(n)
21 − ⟨2|M̂ (|1⟩⟨1|+ |2⟩⟨2|) ρ̂(n)|1⟩E(t)

+⟨2|ρ̂(n) (|1⟩⟨1|+ |2⟩⟨2|) M̂ |1⟩E(t)
]
− 1

2

∑
n

[⟨2|Γ̂ (|1⟩⟨1|+ |2⟩⟨2|) ρ̂(n+1)|1⟩

+⟨2|ρ̂(n+1) (|1⟩⟨1|+ |2⟩⟨2|) Γ̂|1⟩]. (2.11)

Doing some algebraic steps and remembering that Γ̂ only posses diagonal elements we arrive to

∑
n

∂ρ
(n)
21

∂t
=

1

i~
∑
n

[
(E2 − E1)ρ

(n)
21 − (M21ρ

(n)
11 +M22ρ

(n)
21 )E(t) + (M11ρ

(n)
21 +M21ρ

(n)
22 )E(t)

]
−
∑
n

1

2

(
1

τ2
+

1

τ1

)
ρ
(n+1)
21 . (2.12)

Regrouping the order of some terms and setting E21 = E2 − E1,

∑
n

∂ρ
(n)
21

∂t
=

1

i~
∑
n

[
E21ρ

(n)
21 − (ρ

(n)
11 − ρ

(n)
22 )M21E(t)− (M22 −M11)ρ

(n)
21 E(t)

]
−
∑
n

γ12ρ
(n+1)
21 , (2.13)

where

γ12 = γ21 =
1

2

(
1

τ1
+

1

τ2

)
. (2.14)

Using the fact that ρ
(0)
21 = ρ

(0)
12 = 0 we have

∑
n

ρ
(n)
21 =

∑
n

ρ
(n+1)
21 , (2.15)

which allows us to write

∑
n

∂ρ
(n+1)
21

∂t
=

∑
n

[
1

i~
E21 − γ12

]
ρ
(n+1)
21 −

∑
n

1

i~
(ρ

(n)
11 − ρ

(n)
22 )M21E(t)

−
∑
n

1

i~
(M22 −M11)E(t)ρ

(n)
21 . (2.16)

Finally, the last equation implies that –Note that it was not redefined the index of the sum. This
is done with the idea of obtaining recurrence relations–
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∂ρ
(n+1)
21

∂t
=

[
1

i~
E21 − γ12

]
ρ
(n+1)
21 − 1

i~
(ρ

(n)
11 − ρ

(n)
22 )M21E(t)

− 1

i~
(M22 −M11)E(t)ρ

(n)
21 . (2.17)

Following an analogous procedure, we can obtain similar expressions:

∂ρ
(n+1)
12

∂t
=

[
1

i~
E12 − γ21

]
ρ
(n+1)
12 − 1

i~
(ρ

(n)
22 − ρ

(n)
11 )M12E(t)

− 1

i~
(M11 −M22)E(t)ρ

(n)
12 , (2.18)

and

∂ρ
(n+1)
22

∂t
= −γ22ρ(n+1)

22 − 1

i~
(M21ρ

(n)
12 −M12ρ

(n)
21 )Ẽ(t), (2.19)

and also

∂ρ
(n+1)
11

∂t
= −γ11ρ(n+1)

11 − 1

i~
(M12ρ

(n)
21 −M21ρ

(n)
12 )Ẽ(t). (2.20)

In the las equations we have that M11 = ⟨1|M̂ |1⟩, M12 = ⟨1|M̂ |2⟩ , M21 = ⟨2|M̂ |1⟩ and M22 =
⟨2|M̂ |2⟩. Equations (2.17-2.20) can be solved by writing the density matrix elements in terms
of sums proportional to exp(±iωt) and equating terms in both sides of the equations with same
temporal dependence. In this calculations we neglect terms that correspond to higher harmonics
which correspond to successive absorptions and emissions of photons. We are only interested in
the steady state, therefore the nth order perturbative term, ρ(n), is written as

ρ̂(n)(t) = ˆ̃ρ(n)(ω)e−iωt + ˆ̃ρ(n)(−ω)eiωt, (2.21)

which is valid for odd n. When n es even, only DC terms are dominant.

If we set n = 1 en equation (2.21) we have

ρ̂(1)(t) = ˆ̃ρ(1)(ω)e−iωt + ˆ̃ρ(1)(−ω)eiωt, (2.22)

and taking n = 0 in (2.17) we have an equation for ρ
(1)
21 (t) as,

∂ρ
(1)
21

∂t
=

[
1

i~
E21 − γ12

]
ρ
(1)
21 − 1

i~
(ρ

(0)
11 − ρ

(0)
22 )M21E(t)

− 1

i~
(M22 −M11)E(t)ρ

(0)
21 . (2.23)

Remembering that ρ
(0)
21 = 0, we obtain
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∂ρ
(1)
21

∂t
=

[
1

i~
E21 − γ12

]
ρ
(1)
21 − 1

i~
(ρ

(0)
11 − ρ

(0)
22 )M21Ẽ(t). (2.24)

Therefore we can replace equations (2.2) and (2.22) to solve the last equation. After performing
some algebraic steps and equating coefficients of exp(−iωt), we have

− iωρ̃
(1)
21 (ω) =

[
1

i~
E21 − γ12

]
ρ̃
(1)
21 (ω)−

1

i~
(ρ

(0)
11 − ρ

(0)
22 )M21Ẽ, (2.25)

which enables us to obtain ρ̃
(1)
ba (ω) so

ρ̃
(1)
21 (ω) =

ẼM21(ρ
(0)
11 − ρ

(0)
22 )

(E21 − ~ω − i~γ12)
. (2.26)

Now, our task to calculate the term ρ̃
(3)
21 (ω). For that purpose we must choose n = 2 in equation

(2.17)

∂ρ
(3)
21

∂t
=

[
1

i~
E21 − γ12

]
ρ
(3)
21 − 1

i~
(ρ

(2)
11 − ρ

(2)
22 )M21E(t)

− 1

i~
(M22 −M11)E(t)ρ

(2)
21 . (2.27)

At the same time we take n = 3 in equation (2.21) to get

ρ(3)(t) = ˆ̃ρ(3)(ω)e−iωt + ˆ̃ρ(3)(−ω)eiωt. (2.28)

Right now we proceed as before, replacing equations (2.2) and (2.28) in (2.27) and equating terms

of exp(−iωt). We also clarify that the terms ρ
(2)
11 (t), ρ

(2)
22 (t) and ρ

(2)
21 (t) are rectification terms that

do not change in time and we can directly replace them by ρ̃
(2)
11 (0), ρ̃

(2)
22 (0) and ρ̃

(2)
21 (0) respectively,

therefore

−iωρ̃(3)21 (ω) =

[
1

i~
E21 − γ12

]
ρ̃
(3)
21 (ω)−

1

i~
(ρ̃

(2)
11 (0)− ρ̃

(2)
22 (0))M21Ẽ

− 1

i~
(M22 −M11)Ẽρ̃

(2)
21 (0). (2.29)

Manipulating this equation allows us to obtain ρ̃
(3)
21 (ω) as

ρ̃
(3)
21 (ω) =

Ẽ

(E21 − ~ω − i~γ12)

[
(ρ̃

(2)
11 (0)− ρ̃

(2)
22 (0))M21 + (M22 −M11)ρ̃

(2)
21 (0)

]
. (2.30)

Our target is to find the difference ρ̃
(2)
11 (0) − ρ̃

(2)
22 (0). We must use equations (2.19) and (2.20) to

accomplish this. So,

∂ρ
(2)
22

∂t
= −γ22ρ(2)22 − 1

i~
(M21ρ

(1)
12 −M12ρ

(1)
21 )E(t) (2.31)
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and

∂ρ
(2)
11

∂t
= −γ11ρ(2)11 − 1

i~
(M12ρ

(1)
21 −M21ρ

(1)
12 )E(t). (2.32)

Focusing in equation (2.32)and knowing that ρ
(2)
11 is a rectification term, we have that

∂ρ
(2)
11

∂t = 0.

We also have to replace ρ
(1)
21 y ρ

(1)
12 by their steady components, i.e, taking t = 0 in equation (2.22).

As well, we take the DC component of E(t), Ẽ, then

0 = −γ11ρ̃(2)11 (0)−
Ẽ

i~

[
M12(ρ̃

(1)
21 (ω) + ρ̃

(1)
21 (−ω))−M21(ρ̃

(1)
12 (ω) + ρ̃

(1)
12 (−ω))

]
(2.33)

The terms ρ̃
(1)
12 (ω) and ρ̃

(1)
21 (−ω) are known as non-resonant terms which can be calculated in the

same manner of equation (2.26). They are given by

ρ̃
(1)
21 (−ω) =

ẼM21(ρ
(0)
11 − ρ

(0)
22 )

(~E21 + ~ω − i~γab)
(2.34)

and

ρ̃
(1)
12 (ω) =

ẼM12(ρ
(0)
11 − ρ

(0)
22 )

(~E21 + ~ω + i~γab)
. (2.35)

As we can see, these last two terms present a dependence of ~E21 + ~ω in their denominators, that
cannot have the possibility of entering in resonance in any time. By this fact, we will neglect them
in the rest of our calculations, then

0 = −γ11ρ̃(2)11 (0)−
Ẽ

i~

[
M12ρ̃

(1)
21 (ω)−M21ρ̃

(1)
12 (−ω)

]
. (2.36)

Manipulating this expression we obtain ρ̃
(2)
aa (0) as

ρ̃
(2)
11 (0) =

iẼ

γ11~

[
M12ρ̃

(1)
21 (ω)−M21ρ̃

(1)
12 (−ω)

]
. (2.37)

Now, we need to replace ρ̃
(1)
21 (ω), which is given by (2.26) and ρ̃

(1)
12 (−ω) that can be obtained in the

same way as (2.26) or simply replacing ω → −ω in equation (2.35). After replacing the mentioned
expressions and doing some mathematical steps we have

ρ̃
(2)
11 (0) = − 2Ẽ2|M21|2(ρ(0)11 − ρ

(0)
22 )γ12

γ11 [(E21 − ~ω)2 + (~γ12)2]
. (2.38)

Following a similar procedure and noting that |M21|2 = |M12|2 and γ12 = γ21, we can find ρ̃
(2)
22 (0)

as

ρ̃
(2)
22 (0) =

2Ẽ2|M21|2(ρ(0)11 − ρ
(0)
22 )γ12

γ22 [(E21 − ~ω)2 + (~γ12)2]
, (2.39)
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where |M21|2 =M21M12.

Finally, using (2.38) and (2.39), we arrive to

ρ̃
(2)
11 (0)− ρ̃

(2)
22 (0) = −2Ẽ2

(
1

γ11
+

1

γ22

)
|M21|2(ρ(0)11 − ρ

(0)
22 )γ12

[(E21 − ~ω)2 + (~γ12)2]
. (2.40)

Lets obtain now ρ̃
(2)
ba (0). We must use (2.16) with n = 1 and remembering that we are only

interested in steady terms. Then

∂ρ
(2)
ba (0)

∂t
=

[
1

i~
E21 − γ12

]
ρ
(2)
21 (0)−

1

i~
(ρ

(1)
11 (0)− ρ

(1)
22 (0))M21Ẽ

− 1

i~
(M22 −M11)Ẽρ

(1)
21 . (2.41)

Since
∂ρ

(2)
21 (0)
∂t = 0 and using (2.22) with t = 0, we obtain

0 =

[
1

i~
E21 − γ12

]
ρ̃
(2)
21 (0)−

1

i~
(ρ̃

(1)
11 (ω) + ρ̃

(1)
11 (−ω)− ρ̃

(1)
22 (ω)− ρ̃

(1)
22 (−ω))M21Ẽ

− 1

i~
(M22 −M11)Ẽ(ρ̃

(1)
21 (ω) + ρ̃

(1)
21 (−ω)). (2.42)

Continuing with ρ̃
(1)
11 (ω) from the use of (2.38) and taking n = 0, we have

∂ρ
(1)
11

∂t
= −γ11ρ(1)11 − 1

i~
(M12ρ

(0)
21 −M21ρ

(0)
12 )E(t), (2.43)

and emphasizing again that ρ
(0)
21 = ρ

(0)
12 = 0,

∂ρ
(1)
11

∂t
= −γ11ρ(1)11 . (2.44)

Once again, using (2.22) and equating terms of exp(−iωt), it is possible to obtain

ρ̃
(1)
11 (ω)(γ11 − iω) = 0, (2.45)

which implies that ρ̃
(1)
11 (ω) = 0. In the same way ρ̃

(1)
11 (−ω) = ρ̃

(1)
22 (ω) = ρ̃

(1)
22 (−ω) = 0.

With these last results and neglecting the non-resonant term ρ̃
(1)
21 (−ω) we have

0 =

[
1

i~
E21 − γ12

]
ρ̃
(2)
21 (0)−

Ẽ

i~
(M22 −M11)ρ̃

(1)
21 (ω). (2.46)

Manipulating this expression we obtain ρ̃
(2)
ba (0), and replacing (2.26),

ρ̃
(2)
21 (0) =

Ẽ2M21(M22 −M11)(ρ
(0)
11 − ρ

(0)
22 )

(E21 − i~γ12)(E21 − ~ω − i~γ12)
. (2.47)
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Replacing (2.40) and (2.47) in equation (2.30) and performing some mathematical steps we finally
arrive to

ρ̃
(3)
21 (ω) = − ẼẼ

2M21(ρ
(0)
11 − ρ

(0)
22 )

(E21 − ~ω − i~γ12)

[
2
(1/γ11 + 1/γ22)|M21|2γ12
(E21 − ~ω)2 + (~γ12)2

− (M22 −M11)
2

(E21 − i~γ12)(E21 − ~ω − i~γ12)

]
. (2.48)

In the spirit of the last derivations, and using previous results, it is possible to calculate the terms

ρ̃
(3)
22 (ω) and ρ̃

(3)
11 (ω). However, such terms, as is mentioned in the work of Ahn and Chuang [?] are

negligible at the time of evaluating the third order absorption coefficient. These terms are

ρ̃
(3)
22 (ω) =

2iẼẼ2|M12|2

(~ω + i~γ22)
Im

[
(M22 −M11)(ρ

(0)
11 − ρ

(0)
22 )

(E21 − i~γ12)(E21 − ~ω − i~γ12)

]
(2.49)

and

ρ̃
(3)
11 (ω) = −2iẼẼ2|M12|2

(~ω + i~γ11)
Im

[
(M22 −M11)(ρ

(0)
11 − ρ

(0)
22 )

(E21 − i~γ12)(E21 − ~ω − i~γ12)

]
. (2.50)

Here, Im denotes imaginary part.

2.3 Linear And Non-Linear Absorption Coefficients

With the results of the last section we can calculate the linear and non-linear absorption coefficients
in quantum systems. The electronic polarization P (t) and the optical susceptibility χ(t) which arise
as consequence of the optical field E(t) can be expressed through the dipolar operator M̂ and the
density matrix as

P (t) = ϵ0χ(ω)Ẽe
−iωt + ϵ0χ(−ω)Ẽeiωt =

1

V
Tr(ρ̂M̂), (2.51)

where V is the volume of the system, ϵ0 is the permittivity of the vacuum and Tr denotes the trace
over the diagonal elements of the matrix ρ̂M̂ . The susceptibility χ is related with the absorption
coefficient α(ω) as

α(ω) = ω

√
µ

ϵR
Im(ϵ0χ(ω)), (2.52)

where µ is the permeability of the system, ϵR is the real part of the permittivity and χ(ω) is the
Fourier component of χ(t) with dependence exp(−iωt). We can write the polarization as

P (t) =
1

V

[
⟨1|ρ̂M̂ |1⟩+ ⟨2|ρ̂M̂ |2⟩

]
. (2.53)

Introducing the completeness relation and using (2.4), we have
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P (t) =
1

V

∑
n

[
ρ
(n)
11 M11 + ρ

(n)
12 M21 + ρ

(n)
21 M12 + ρ

(n)
22 M22

]
. (2.54)

With the aid of (2.21)

P (t) =
1

V

∑
n

[
ρ̃11

(n)(ω)M11 + ρ̃12
(n)(ω)M21 + ρ̃21

(n)(ω)M12 + ρ̃22
(n)(ω)M22

]
e−iωt

∼ (−ω). (2.55)

Choosing n = 1, using (2.51), taking away the non-resonant term, equating terms of e−iωt and
remembering that ρ̃11

(1)(ω) = ρ̃22
(1)(ω) = 0, allow us to write

ϵ0χ
(1)(ω)Ẽ =

1

V
ρ̃21

(1)(ω)M12 (2.56)

Solving for ϵ0χ
(1)(ω), replacing (2.26), taking its imaginary part and using (2.52), we have,

α(1)(ω) = ω

√
µ

ϵR

|M12|2

V

(ρ
(0)
11 − ρ

(0)
22 )~γ12

(E21 − ~ω)2 + (~γ12)2
. (2.57)

Defining σv = (ρ
(0)
11 −ρ(0)22 )/V as the three-dimensional concentration of electrons in the system, we

have

α(1)(ω) = ω

√
µ

ϵR

|M12|2σv~γ12
(E21 − ~ω)2 + (~γ12)2

. (2.58)

Following a similar procedure we can find a third-order expression, we are able to begin with

ϵ0χ
(3)(ω)Ẽ =

1

V

[
ρ̃11

(3)(ω)M11 + ρ̃12
(3)(ω)M21 + ρ̃21

(3)(ω)M12 + ρ̃22
(3)(ω)M22

]
. (2.59)

Neglecting the non-resonant term ρ̃ab
(3)(ω), remembering that, as we said before, the terms

˜ρaa
(3)(ω) and ρ̃bb

(3)(ω) just induce a small contribution that we can avoid in our calculations.
Solving for ϵ0χ

(3)(ω), replacing equation (2.48), taking its imaginary part and using (2.52), we can
obtain

α(3)(ω, I) = −ω
√

µ

ϵR
Ẽ2|M12|2σvIm

{
1

(E21 − ~ω − i~γ12)

[
2γ12(γ11 + γ22)|M12|2

γ11γ22 [(E21 − ~ω)2 + (~γ12)2]

− (M22 −M11)
2

(E21 − i~γ12)(E21 − ~ω − i~γ12)

]}
. (2.60)

Defining the intensity I of the electromagnetic field through the equation

Ẽ2 =
I

2ϵ0nrc
, (2.61)

where c is the speed of light of the vacuum and nr is the refractive index of the medium, we have
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α(3)(ω, I) = −ω
√

µ

ϵR

(
I

2ϵ0nrc

)
|M12|2σvIm

{
1

(E21 − ~ω − i~γ12)

[
2γ12(γ11 + γ22)|M12|2

γ11γ22 [(E21 − ~ω)2 + (~γ12)2]

− (M22 −M11)
2

(E21 − i~γ12)(E21 − ~ω − i~γ12)

]}
. (2.62)

As a fact of simplicity, lets choose γ11 = γ22, which implies that γ12 = γ11 = γ22, so

γ12(γ11 + γ22)

γ11γ22
= 2. (2.63)

Taking the imaginary part of equation (2.62) and performing a lengthly algebra leads to a more
manageable expression for the third-order absorption coefficient as

α(3)(ω, I) = −ω
√

µ

ϵR

(
I

2ϵ0nrc

)
|M12|2σv~γ12

[(E21 − ~ω)2 + (~γ12)2]2[
4|M12|2 −

(M22 −M11)
2(3E2

21 − 4~ωE21 + ~2(ω2 − γ212))

E2
21 + (~γ12)2

]
. (2.64)

With (2.58) and (2.63), the optical absorption coefficient is given by

α(ω, I) = α(1)(ω) + α(3)(ω, I). (2.65)

2.4 Linear and Non-Linear Change In The Refractive
Index

In order to calculate the changes in the refractive index, we follow a procedure which is analogous
to the one of the last section. In this time, we start with the fact that the change in the refractive
index is related with the optical susceptibility through the equation

∆n(ω)

nr
= Re

(
χ(ω)

2n2r

)
. (2.66)

Using equation (2.56), introducing the previous definitions and taking the real part of the expres-
sions, allow us to find an expression for the linear change in the refractive index, therefore

∆n(1)(ω)

nr
=
σv|M12|2

2n2rϵ0

E21 − ~ω
(E21 − ~ω)2 + (~γ12)2

. (2.67)

Lets calculate now the third order correction to the change in the refractive index parting from
equation (2.59), which after the preliminary considerations, can be written as

χ(3)(ω) =
1

V Ẽϵ0
ρ̃21

(3)(ω)M12. (2.68)

Using (2.48) and (2.68) in (2.66) and taking into account the definitions for σv and I, we obtain
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∆n(3)(ω, I)

nr
=

−I|M12|2σv
4n3rϵ0c

Re

{
E21 − ~ω + i~γ12

[(E21 − ~ω)2 + (~γ12)2]2[
4|M12|2 −

(M22 −M11)
2(E21 + i~γ12)(E21 − ~ω + i~γ12)

E2
21 + (~γ12)2

]}
. (2.69)

If use the relation c2 = 1/ϵ0µ and manipulate the equation through a long algebra, we can arrive
to

∆n(3)(ω, I)

nr
= −|M12|2σv

4n3rϵ0

µcI

[(E21 − ~ω)2 + (~γ12)2]2

[
4(E21 − ~ω)|M12|2 −

(M22 −M11)
2

E2
21 + (~γ12)2{

(E21 − ~ω)
[
E21(E21 − ~ω)− (~γ12)2

]
− (~γ12)2 [2E21 − ~ω]

}]
. (2.70)

Therefore, the total change in the refractive index is given by

∆n(ω, I)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω, I)

nr
. (2.71)



Chapter 3

A Model For Two-Dimensional
Quantum Rings: Optical

Properties

The exact solutions for the two-dimensional motion of a conduction band electron in a disc shaped
quantum dot under the effect of an external magnetic field and parabolic and inverse square con-
fining potentials are used to calculate the linear and nonlinear optical absorption as well as the
linear and nonlinear corrections to the refractive index in the system. It is shown that this kind of
structure may work well as a model for a quantum ring. Using the basic parameters typical of the
GaAs, the results show that the influence of the normally oriented magnetic field induces a blue
shift in both the first and third order peaks of the calculated optical quantities. In addition, total
peak amplitudes are shown to be growing functions of the magnetic field strength. The increase in
the strength of the inverse square potential function enhances significantly the contribution from
the nonlinear third-order terms in both the absorption and the relative correction to the refractive
index.

3.1 Eigenstates And Eigenvalues Of The System

Consider the motion of a confined electron in a disc shaped quantum dot (DSQD). Then, the polar
system (r, φ) is a suitable set of coordinates for the description of the allowed quantum states.
Taking into account the presence of a static magnetic field B, oriented along the positive normal
to the plane (here named as z-direction), the Hamiltonian of the system, within the framework of
the effective mass approximation, is given by

Ĥ =
1

2m∗

[
p+

q

c
A
]2

+ V (r), (3.1)

where q, m∗ and c are the absolute value of the electron charge, the electron effective mass, and
speed of light respectively.

14
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Figure 3.1: A cross-view showing the potential energy profile along the direction φ = 0.

Knowing that ∇ × A = B = Bk̂, we can find that A = (Ar = 0, Aφ = Br
2 , Az = 0), which is

the vector potential of the static magnetic field. We are assuming here the presence of a confining
potential, V (r), which combines a parabolic and inverse squared potential functions;

V (r) =
1

2
m∗ω2

0 r
2 +

~2

2m∗
λ

r2
, (3.2)

where ω0 represents the confinement frequency and the dimensionless parameter λ characterizes
the strength of the the external field, with λ < 0 describing an attractive potential and λ ≥ 0 a
repulsive one. In the present work, we take λ ≥ 0 which enables us to calculate solutions for the
lower energy bound since the attractive potential has no lower energy bound.

Now, in order to find the eigenfunctions of our system, we introduce the Schrödinger equation has
the form

Ĥψ = Eψ. (3.3)

If we replace equation (3.1) in this last equation, we have[
1

2m∗

[
p+

q

c
A
]2

+ V (r)

]
ψ = Eψ

1

2m∗

[
p2 +

q2

c2
A2 +

q

c
(p.A+A.p)

]
ψ + V (r)ψ = Eψ. (3.4)

Since p = −(i~)∇ and if we use the Coulomb gauge (∇.A = 0), we can use the fact that ∇.(Aψ) =
A.(∇ψ) + (∇.A)ψ = A.(∇ψ) to write

1

2m∗

[
p2 +

q2

c2
A2 + 2

q

c
A.p

]
ψ + V (r)ψ = Eψ. (3.5)

If now, we note that A.p = Aφpφ = − iB~
2

∂
∂φ and replace the expression for A and write p in polar

coordinates the Schrödinger equation adopts the form

[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
+
q2

c2
B2

8m∗ r
2 − iB~

2

∂

∂φ
+ V (r)

]
ψ = Eψ, (3.6)

and introducing the orbital angular momentum operator L̂z along the z− axis as
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L̂z =
~
i

∂

∂φ
, (3.7)

we obtain

[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
+
m∗ω2

c

8
r2 +

ωc

2
L̂z + V (r)

]
ψ = Eψ, (3.8)

where ωc =
qB
m∗c is known as the cyclotron frequency. Replacing V (r) we have

[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
+
m∗ω2

c

8
r2 +

ωc

2
L̂z +

1

2
m∗ω2

0 r
2 +

~2

2m∗
λ

r2

]
ψ = Eψ. (3.9)

If we manipulate the terms 1
2m

∗ω2
0 r

2 +
m∗ω2

c

8 r2 = 1
2m

∗
(
ω2
0 +

ω2
c

4

)
r2 and define Ω =

√
ω2
0 +

ω2
c

4 as

the total confinement frequency in the magnetic field we arrive to[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2

)
+

1

2
m∗Ω2r2 +

~2

2m∗
λ

r2
+
ωc

2
L̂z

]
ψ = Eψ, (3.10)

where E is the energy eigenvalue. To find the solution of (3.10) that corresponds to a two-
dimensional eigenstate ψ, it is customary to propose

ψ(r, φ) = R(r)
eimφ

√
2π
, (3.11)

where m is an integer usually named as magnetic quantum number, so[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
+

1

2
m∗Ω2r2 +

~2

2m∗
λ

r2
+
ωc

2
m~
]
R(r)

eimφ

√
2π

= ER(r)
eimφ

√
2π
. (3.12)

Canceling equal terms in both sides of the equation,[
− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
+

1

2
m∗Ω2r2 +

~2

2m∗
λ

r2
+
ωc

2
m~
]
R(r) = ER(r). (3.13)

Manipulating the form of this equation, we can write[(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2

)
− m∗2Ω2

~2
r2 − λ

r2
− ωcmm

∗

~

]
R(r) = −2m∗E

~2
R(r). (3.14)

We can perform an additional substitution as

R(r) =
χ(r)√
r
, (3.15)

and use it to calculate ∂
∂rR(r) and

∂2

∂r2R(r) as

∂

∂r
R(r) =

∂χ(r)

∂r
r−1/2 − 1

2
χ(r)r−3/2, (3.16)

and
∂2

∂r2
R(r) =

∂2χ(r)

∂r2
r−1/2 − ∂χ(r)

∂r
r−3/2 +

3

4
χ(r)r−5/2, (3.17)

The combination of (3.14-3.17) allows to obtain an equation for χ(r) in the form

d2χ

dr2
+

[
2m∗E
~2

− m∗Ω2

~2
r2 − m2 + λ− 1/4

r2

]
χ = 0, (3.18)
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with

E = E − m~ωc

2
. (3.19)

Now, if we perform a typical change, which consist of setting l(l + 1) = m2 + λ− 1/4, we have

d2χ

dr2
+

[
2m∗E
~2

− m∗Ω2

~2
r2 − l(l + 1)

r2

]
χ = 0, (3.20)

where the only solution of the quadratic equation for l with physical meaning is:

l = −1

2
+
√
λ+m2. (3.21)

Introducing a new variable as ρ = r2 we can write

d

dr
= 2ρ1/2

d

dρ
, (3.22)

and
d2

dr2
= 2

d

dρ
+ 4ρ

d2

dρ2
, (3.23)

then, it is possible to rewrite the differential equation (3.20) as follows;

d2χ

dρ2
+

1

2ρ

dχ

dρ
−
[
m∗2Ω2

4~2
+
l(l + 1)

4ρ2
− m∗E

2~2ρ

]
χ = 0. (3.24)

Defining η =
√

~
m∗ Ω , κ = E

2 ~Ω , sm = l+1
2 = 1

4 +
√
λ+m2

2 and setting ρ = η2z we have

d

dρ
=

1

η2
d

dz
, (3.25)

and
d2

dρ2
=

1

η4
d2

dz2
. (3.26)

With the last changes, equation (3.24) can be written as

d2χ

dz2
+

1

2z

dχ

dz
−
[
1

4
+
sm (sm − 1/2)

z2
− κ

z

]
χ = 0. (3.27)

Taking into account the asymptotic behavior at the origin and at the infinity for the wave function,
we can propose the following ansatz for the well-defined solutions at those two limits:

χ(z) = zsme−z/2F (z), (3.28)

where we can obtain

dχ(z)

dz
= smz

sm−1e−z/2F (z)− 1

2
zsme−z/2F (z) + zsme−z/2 dF (z)

dz
, (3.29)

and

d2χ(z)

dz2
= zsme−z/2 d

2F (z)

dz2
+ 2smz

sm−1e−z/2 dF (z)

dz
− zsme−z/2 dF (z)

dz

−smzsm−1e−z/2F (z) +
1

4
zsme−z/2F (z) + sm(sm − 1)zsm−2e−z/2F (z). (3.30)
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Figure 3.2: The probability density corresponding to the ground state wave function obtained from
eqns. (13), (15), and (16). The values of ω0 and λ are the same used in the figure 1.

Introducing (3.28-3.30) in (3.27) we find the equation

z
d2F

dz2
+ ((2sm + 1/2)− z)

dF

dz
− (sm + 1/4− κ)F = 0, (3.31)

which can be rewritten as

z
d2F

dz2
+ (b− z)

dF

dz
− aF = 0, (3.32)

known as Kummer’s differential equation, whose solution is the confluent hypergeometric function
[36]. Here b = 2sm + 1/2 and a = sm + 1/4 − κ. The solutions of this equation that guarantee
that χ(z) remains finite require the parameter a to become a negative integer, −n. In this case,
the confluent hypergeometric function reduces to a polynomial of n-th degree. Here, we are going
to use the representation

F (−n, b;x) = Γ(1 + n)Γ(b)

Γ(b+ n)
Lb−1
n (x), (3.33)

where Γ(c) is the Euler gamma function, and Lb−1
n (x) are the so-called associated Laguerre poly-

nomials. With the aid of (3.11) and (3.33) we can write

ψ(r, φ)mn =
Nmn√
r
r2sme−r2/2η2

L2sm−1/2
n (r2/η2)eimφ, (3.34)

where the normalization constant is determined by means of∫
dV ψψ∗ = |Nmn|2

∫ 2π

0

dφ

∫ ∞

0

dr r4sme−r2/η2
[
L2sm−1/2
n (r2/η2)

]2
= 1, (3.35)

but ∫ 2π

0

dφ = 2π, (3.36)

therefore

2π|Nmn|2
∫ ∞

0

dr r4sme−r2/η2
[
L2sm−1/2
n (r2/η2)

]2
= 1. (3.37)
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 Figure 3.3: The same as in figure 2, but for the case of the wave function that corresponds to the
first excited electron state.

In order to find the normalization constant, lets set y = r2/η2, so dy = 2rdr/η2. Then

2πη4sm+1|Nmn|2

2

∫ ∞

0

dy y2sm−1/2e−y
[
L2sm−1/2
n (y)

]2
= 1. (3.38)

Simplifying the last equation and using the orthonormality condition∫ ∞

0

xαe−xLα
n(x)L

α
m(x)dx =

Γ(n+ α+ 1)

n!
δnm, (3.39)

allow us to write

πη4sm+1|Nmn|2
Γ(n+ 2sm − 1/2 + 1)

n!
= 1. (3.40)

Taking Nnm as a real constant, we can arrive to

Nmn =

√
n!

πΓ(2sm + n+ 1/2)η4sm+1
. (3.41)

By combining n = −a = E
2 ~Ω − sm − 1

4 and E = E − m~ωc

2 , we can obtain

n =
E

2~Ω
− m~ωc

4~Ω
− sm − 1

4
=

E

2~Ω
− mωc

4Ω
− sm − 1

4
, (3.42)

hence
E

2~Ω
= n+ sm +

1

4
+
mωc

Ω
. (3.43)

So, the energy spectrum of the confined states as

E = (2n+ 2sm +
1

2
)~Ω+

m~ωc

2
(3.44)

Replacing the expression for sm and Ω, we can obtain (after setting E = Emn)

Emn = (2n+ 1 +
√
λ+m2)~

√
ω2
0 +

ω2
c

4
+
m~ωc

2
. (3.45)
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As it can be seen from the figure 1, if λ ̸= 0, there will be a spatial region in the disc shaped
quantum dot in which the repulsive potential barrier centered at the origin is significantly high,
and strong enough to keep the electrons far from reaching values of the radial component close
to r = 0. This means that the behavior of the carrier system will largely resemble that of the
electrons confined in a quantum ring. This is confirmed by observing the figures 2 and 3, where we
are depicting the probability density corresponding to the ground and first excited electron states
in the system under study. There, the shape of |ψ|2 indicates that the radial region around the
origin is forbidden for the carriers given the repulsive effect of the inverse square barrier. Then,
the use of the present model, with a suitable combination of both ω0 and λ could be useful for the
simulation of actual quantum rings, provided the advantages of having analytical expressions for
both the wave functions and eigenvalues of the problem.

3.2 Non-Linear Optics

Among the many applications that these states may have, we choose in this work to apply them
in the calculation of linear and nonlinear optical coefficients in DSQD (or –as commented above–
parabolic 2D QR) provided this kind of systems are attracting much interest in optoelectronics.
Given that some intersubband energy intervals, together with their corresponding dipole matrix
elements, will be used to calculate the absorption coefficients, we will choose here the energy levels
and the wave functions participating in the transition as

E1 = E00 E2 = E11, ψ1 = ψ00 ψ2 = ψ11, (3.46)

we then have

E1 = (1 +
√
λ)~
√
ω2
0 +

ω2
c

4
, (3.47)

and

E2 = (3 +
√
λ+ 1)~

√
ω2
0 +

ω2
c

4
+

~ωc

2
. (3.48)

The analogous expressions for the wave functions are

ψ1 =
N00√
r
r2s0e−r2/2η2

L
2s0−1/2
0 (r2/η2), (3.49)

and

ψ2 =
N11√
r
r2s1e−r2/2η2

L
2s1−1/2
1 (r2/η2)eiφ. (3.50)

The energy difference E21 between E2 and E1, is expressed as:

E21 = E2 − E1 = (2 +
√
λ+ 1−

√
λ)~
√
ω2
0 +

ω2
c

4
+

~ωc

2
. (3.51)

If we manipulate the expression
√
λ+ 1−

√
λ as

√
λ+ 1−

√
λ =

(
√
λ+ 1−

√
λ)(

√
λ+ 1 +

√
λ)

√
λ+ 1 +

√
λ

λ+ 1− λ
√
λ+ 1 +

√
λ
=

1
√
λ+ 1 +

√
λ
, (3.52)

we are able to obtain

E21 =

(
2 +

1
√
λ+ 1 +

√
λ

)
~
√
ω2
0 +

ω2
c

4
+

~ωc

2
. (3.53)
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Finally, the electric dipole transition matrix elements are written as

M12 = |q ⟨ψ1 |r cosφ|ψ2⟩| . (3.54)

By the moment, lets focus our attention in calculating the term ⟨ψ2 |r cosφ|ψ1⟩, which is given by

⟨ψ1 |r cosφ|ψ2⟩ = N00N11

∫ 2π

0

dφeiφ cosφ

∫ ∞

0

dr r2(s0+s1+1/2)e−r2/η2

L
2s0−1/2
0 (r2/η2)L

2s1−1/2
1 (r2/η2),

(3.55)
but ∫ 2π

0

dφ eiφ cosφ =

∫ 2π

0

dφ eiφ
(eiφ + e−iφ)

2
=

1

2

∫ 2π

0

dφ(e2iφ + 1) =
2π

2
= π, (3.56)

then

⟨ψ1 |r cosφ|ψ2⟩ = N00N11π

∫ ∞

0

dr r2(s0+s1+1/2)e−r2/η2

L
2s0−1/2
0 (r2/η2)L

2s1−1/2
1 (r2/η2). (3.57)

Taking into account that L
2s0−1/2
0 (r2/η2) = 1, we have

⟨ψ1 |r cosφ|ψ2⟩ = N00N11π

∫ ∞

0

dr r2(s0+s1+1/2)e−r2/η2

L
2s1−1/2
1 (r2/η2). (3.58)

Defining s0 + s1 + 1/2 = α1 − 1 and 2s1 − 1/2 = α2, we can write

⟨ψ1 |r cosφ|ψ2⟩ = N00N11π

∫ ∞

0

dr r2(α1−1)e−r2/η2

Lα2
1 (r2/η2), (3.59)

and setting r2/η2 = x which implies that dr = dxη
2x

−1/2. Therefore

⟨ψ1 |r cosφ|ψ2⟩ =
N00N11πη

2α1−1

2

∫ ∞

0

dxxα1−3/2e−xLα2
1 (x). (3.60)

Using the relation ∫ ∞

0

dxxβ1−1e−xLβ2
n (x) =

(β2 − β1 + n)!

n!(β2 − β1)!
Γ(β1), (3.61)

equation (3.60) becomes

⟨ψ1 |r cosφ|ψ2⟩ =
N00N11πη

2α1−1

2

(α2 − α1 + 3/2)!

(α2 − α1 + 1/2)!
Γ(α1 − 1/2). (3.62)

Replacing the expressions for s1 and s2 and combining (3.54) and (3.62) we arrive to

M12 = |q ⟨ψ2 |r cosφ|ψ1⟩| =
qπ

2
N00N11η

2(s0+s1+1) (s1 − s0 − 1/2)!

(s1 − s0 − 3/2)!
Γ(s0 + s1 + 1). (3.63)

With the idea of calculating the other matrix elements that appear in the optical coefficients of

interest, i.e. M11 and M22, we must take into account that the factor
∫ 2π

0
dφ cosφ = 0 appears in

those terms. Therefore, we immediately conclude that

M22 =M11 = 0, (3.64)

which can be thought as a consequence of the electric dipole selection rules.

If use now the results of the last chapter and also and, if we take into account (3.64), the expressions
for the linear and third-order nonlinear optical absorption coefficients are, respectively,

α(1)(ω) = ω

√
µ

ϵR

|M12|2σv~γ12
(E21 − ~ω)2 + (~γ12)2

(3.65)
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and

α(3)(ω) = −
√

µ

ϵR

(
4Iω

2ϵ0nrc

)
|M12|4σv~γ12

[(E21 − ~ω)2 + (~γ12)2]2
, (3.66)

where –as we mentioned in the last chapter– σv is the electron density of the DSQD, µ is the
permeability of the system, ϵR = ϵ0n

2
r (nr is the refractive index) is the real part of the permittivity,

~ω is the incident photon energy, and I = 2ϵ0nrcẼ
2 is the incident optical intensity. Therefore,

the total optical absorption coefficients can be written as

α(ω) = α(1)(ω) + α(3)(ω). (3.67)

In a similar manner it is possible to obtain the linear and third-order nonlinear relative refractive
index change whose expressions are, respectively,

∆n(1)(ω)

nr
=
σv|M12|2

2n2rϵ0

E21 − ~ω
(E21 − ~ω)2 + (~γ12)2

(3.68)

and
∆n(3)(ω)

nr
= −σvµcI|M12|4

n3rϵ0

E21 − ~ω
[(E21 − ~ω)2 + (~γ12)2]2

, (3.69)

where (3.64) was again taken into account. Finally the total relative refractive index change can
be calculated as

∆n(ω)

nr
=

∆n(1)(ω)

nr
+

∆n(3)(ω)

nr
. (3.70)

3.3 Results and discussion

In this section we present our calculations for the optical absorption and refractive index change
in the type of 2D-quantum dot under study. The prototypical system considered consists of a
GaAs-based DSQD, and the values of the confining potential input parameters are those reported
in the caption linked to figure 4. Moreover, the different constants appearing in the expressions
above are: σv = 5 × 1022m−3, Γ0 = 1/(0.14 ps), c = 3 × 108m/s (the speed of light in vacuum),
ϵ0 = 8.85× 10−12 F/m, µ = 1.256,× 10−6 T m/A, nr = 3.2, q = 1.6× 10−19 C, andm∗ = 0.067m0,
where m0 is the free electron mass.

In the figure 3.4(a) one can observe the behavior of the linear, third-order nonlinear and total
optical absorption coefficients, calculated as functions of the photon energy. Several distinct values
of the applied static magnetic field have been taken into account, as it may be seen from the
different curves presented. From the results depicted it is possible to conclude that, as it should
be expected, the the main contributions come from the linear term since the third-order coefficient
just induces a comparatively small contribution. There is a resonant peak located in ~ω = E21

which suffers a blue shift as there is a raising in the magnetic field intensity. By considering the
expression (16) for the energy levels, one sees that E21 directly depends on ωc; that is, with the
field amplitude, B. Therefore, when there is an increase of the field intensity, the effect is to move
the resonant energy towards higher energy values.

On the other hand, in the figure 3.4(b) we notice the variation of the maximum peak intensity
of the coefficients as a function of the magnetic field. Here, the combination of two main reasons
can explain the variation in the peak intensities: On one side, we have the variation associated to
changes in the value of the electric dipole matrix element |M12|. This quantity tends to decrease
with the the magnetic field intensity until it reaches an asymptotic value, in which case it is not
possible to keep a progressive confining of the electron in the system. In such a way, the wave
functions of the system stop varying which leads to a constant value of |M12|. On the other side,
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Figure 3.4: Linear (black line), third-order nonlinear (red line) and total (blue line) opti-
cal absorption coefficients as a function of the photon energy (a) and magnetic field (b) with
ω0 = 1.2× 1013s−1, λ = 0.5, and I = 1.5× 1010W/m2 for figure (a). In figure (b) we use the same
parameters as well as ~ω = E21.

we realize that the peak intensities vary as a result of the magnetic field provided that the coefficients
are proportional to the frequency of resonance, E21, and this quantity grows linearly for sufficiently
high magnetic field strengths, as can be deduced from the equation (18). Such energy difference
does not have an upper limit value, therefore we may characterize it as the most influent factor
in the behavior of the peak intensities. This is true because it affects mainly the dependence
of the linear optical absorption coefficient, which dominates in the overall result. The third-order
coefficient contributes more significantly in the region of small field intensities, in which the increase
of the energy difference E21 is the main factor in the variation. Then, for larger field strength, the
decreasing tendency of the dipole matrix elements becomes the leading effect in the monotony of
the nonlinear optical absorption coefficient. It is possible to see that the first and total coefficients
tend to have the same behavior but it is more visible as we reach sufficiently high magnetic fields
due to the fact that at such large values of B, the contribution of α(3) is practically negligible.

The outcome of an analogous calculation but for the relative change in the refractive index is the
one presented in the figure 3.5. Fig. 5(a) contains the linear and third-order nonlinear contributions
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Figure 3.5: Linear (black line), third-order nonlinear (red line) and total (blue line) relative
refractive index change as a function of the photon energy (a) and magnetic field (b) with
ω0 = 1.2 × 1013s−1, λ = 0.5, and I = 1.5 × 1010W/m2 for figure (a). In figure (b) we use
the same parameters as well as ~ω = E21 − ~Γ0.

as well as total relative change, all depicted as functions of the incident photon energy. Again, a
set of different values of the magnetic field strength are used as input parameters. According to
the discussion made above, augmenting the field intensity leads to a blue shift in the positions of
the peaks since, as can be seen from equations (30) and (31), these quantities are directly related
with the difference E21 − ~ω. Also, one readily observes that, contrary to the case of the optical
absorption coefficients, the growth in the magnitude of B has the consequence of a reduction in the
∆n/n peak amplitudes. Looking once again at the same two equations we realize that the variation
responsible for such a dependence is that of |M12| vs ~ω = E21. Now, there is no factor proportional
to ω that can influence on the value of the coefficients. Therefore, the monotonous evolution of
the dipole matrix elements towards a smaller limiting value for high enough field strengths dictates
the observed behavior. One may readily notice that by observing the figure 3.5(b). There, the
magnitude of the linear, nonlinear and total resonant peak amplitudes are shown as decreasing
functions of B; thus confirming the above made discussion.

The Fig. 3.6(a) shows our results for the linear, third-order nonlinear and total optical absorption
coefficients as functions of the photon energy. In this case we keep the magnetic field to remain
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Figure 3.6: Linear (black line), third-order nonlinear (red line) and total (blue line) optical absorp-
tion coefficients as a function of the photon energy (a) and the dimensionless parameter λ (b) with
ω0 = 1.2 × 1013s−1, B = 0, and I = 1.5 × 1010W/m2 for figure (a). The direction of the arrows
determines in which direction is raising λ for the optical absorption coefficients. In figure (b) we
use the same parameters as well as ~ω = E21.

constant, and vary the dimensionless parameter λ. As a consequence of this, there is observed a
a non perceptible red shift of the resonant peak but the sizes of the peaks do present significant
variations. At a first glance, it is possible to see that when λ increases its value, not only the
first-order peak increases its size but also the third-order peak does it. This behavior allows us to
conclude that when the inverse square potential parameter acquires sufficiently large values, the
confinement potential is strong enough as to prevent us from neglecting the contribution of the third
order coefficient –even if the first order contribution is significantly stronger. The variation of the
peak intensities can be explained on the basis of the arguments presented in the comments about
Fig. 3.4. But this time we must clarify that the matrix element |M12| tends to grow as we increase
λ, whereas the energy difference E21 decreases with λ given that it has an inverse dependence on it.
However, it should be stressed that, in this situation, the role of dominant quantity is represented
by |M12|; which explains why also in this case, the peaks tend to increase their intensities with
larger values of λ. From Fig. 3.6(b) we can corroborate our previous arguments since one may see
that with the increase in the value of λ, the third-order coefficient starts to provide an important
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Figure 3.7: Linear (black line), third-order nonlinear (red line) and total (blue line) relative re-
fractive index change as a function of the photon energy (a) and the dimensionless parameter λ
(b) with ω0 = 1.2× 1013s−1, B = 0, and I = 1.5× 1010W/m2 for figure (a). The direction of the
arrows determines in which direction is raising λ for the the corresponding coefficients. In figure
(b) we use the same parameters as well as ~ω = E21 − ~Γ0.

contribution to the total coefficient. In fact, it shows a linear increment after certain value of λ
that is nearly the same value at which the linear and total optical absorption coefficients begin to
show different behaviors.

A similar procedure of calculation, in this case for the relative change in the refractive index of the
system, leads to the results shown in the figure 3.7. It can be seen that, in this case, the first and
third order contributions have similar behaviors in regard of the variation of the peak amplitudes,
as a consequence of the increment in the value of the inverse square potential parameter λ. As
in Fig. 3.6(a), there is a non perceptible red shift in the curves. The first-order peak amplitude
augments in the positive direction whilst the third-order peak amplitude diminishes (grows along
the negative direction) [Fig. 3.7(a)]. The curves shown in the figure 3.7(b) confirm such features.
One notices that the influence of augmenting the intensity of the inverse square potential reflects
differently for the first- and third-order contributions of this quantity. The explanation for the
variations exhibited by ∆(1)/n and ∆(3)/n follows the same arguments presented in the discussion
of the results in figure 6. However, it is possible to observe that the third-order coefficient ∆(3)/n
is significantly less sensitive to the variation of λ if compared with the first-order correction as well
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Figure 3.8: Total optical absorption coefficient as a function of the photon energy. In both figures
we use λ = 0.5, and B = 0. In figure (a) we use ω0 = 1.2 × 1013s−1 and vary the intensity I
through a parameter χ as I = χ× 1010W/m2. In figure (b) we use I = 1.5× 1010W/m2 and vary
ω0 through a parameter ϑ as ω0 = ϑ× 1013s−1.

as with the corresponding dependence of the third-order optical absorption coefficient. We may
see from equations (18), (30), and (31) that ∆n/n is, in first-order, proportional to λ1/2, whereas
it becomes proportional to λ3/2 in the case of the third-order contribution. Given that the values
considered for the inverse square parameter are less than unity, this dependence explains the lowest
rate of changing for the latter.

In addition, the figure 3.8(a) contains the results of the calculation for the total optical absorption
coefficient as a function of the photon energy. In this figure, we have chosen to vary the intensity
of the incident light and keep all the remaining parameters fixed. As we can see, the effect of
augmenting the light intensity is apparent with regard to both the peak’s height and symmetry.
The height of the resonant peak is notoriously reduced if the incident light intensity increases. The
particular features of the peak’s asymmetry, which is practically unnoticeable for small intensities,
now become more visible as long as the value of I grows. These facts can be explained by first
noticing that the linear contribution to the optical absorption coefficient does not depend on the
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Figure 3.9: Total relative refractive index change as a function of the photon energy. In both
figures we use λ = 0.5, and B = 0. In figure (a) we use ω0 = 1.2× 1013s−1 and vary the intensity I
through a parameter χ as I = χ× 1010W/m2. In figure (b) we use I = 1.5× 1010W/m2 and vary
ω0 through a parameter ϑ as ω0 = ϑ× 1013s−1.

incident light intensity. Thus, its values remain unchanged if we modify the value of such input
quantity. however, the third-order coefficient has a linear dependence with I which implies that
as we increase the intensity, the magnitude of this coefficient grows, with –given the negative sign
of this contribution– the consequent reduction of the total absorption peak height. It comes a
moment when the value of the incident light intensity is so high that the total response at the
frequency value of resonance turns to zero, as we may observe in the lowest curve of figure 3.8(a).
Moreover, as the effect of increasing the intensity is more apparent, two different peaks begin to
appear, in each case with different heights. This is a consequence of the dominant role played by
the third-order coefficient, under such conditions.

In the figure 3.8(b) we are representing the curves for the total optical absorption coefficient,
obtained by only varying the confinement frequency of the system, ω0. It is possible to observe
a blue shift in the resonant peak. Such an effect can be understood by looking at the expression
for E21 given in the equation (18). The increase in ω0 directly reflects in a raising of the energy
difference. The second observed effect is the increasing of the peak intensity associated with
the growth of the ω0 value. This is mainly due to the fact that both the first- and third-order
coefficients have a linear dependence on the energy of resonance, ~ω = E21, which is quantity
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that, as we already discussed, increases with the confinement potential energy. In this particular
case, the electric dipole matrix element |M12| tends to decrease as a function of augmenting ω0,
leading us to conclude that, under the conditions present in the evaluation, the term proportional
to the energy difference is the leading one, with dominance over the effect introduced by the term
proportional to the electric dipole moment.

Under the same conditions taken into account to derive the results shown in the figure 3.8, we
have obtained the corresponding variations of the relative change in the refractive index. They are
presented in the figure 3.9. The influence of the variation in the incident light intensity appears
in fig. 3.9(a), which depicts the total ∆n/n as a function of the photon energy. In this case,
one observes that augmenting the value of I results, in a progressive reduction in the resonant
peak amplitudes. Once again, this can be explained by considering the increasing contribution
coming from the third-order correction, which is the only one term depending on the light intensity
–in a linear form. This term is always opposite in sign to the first-order one; thus its weight
is progressively carrying importance into the total relative change. However, as we can see, the
influence of this nonlinear term is –at least for the values of I considered here– not sufficient to
invert the overall monotony of the quantity of interest, which is imposed by the dominance of the
–intensity independent– linear contribution and ∆n/n keeps the same functional shape obtained
for a fixed value of the incident intensity, and shown in figures 3.5 and 3.7.

The figure 3.9(b) presents the calculated relative change of the refractive index as a function of
the incident photon energy with the variation of the degree of confinement posed by the parabolic
potential term amplitude. We see now that, together with the blue shift of the resonant peaks, due
to the direct dependence of the zero-correction frequency ω = E21/~ on the value of the confinement
frequency, ω0. Nonetheless, the peak amplitudes are reduced by the influence of a higher degree of
confinement because, in the case of this quantity, the magnitude is dominated by the contribution
of the dipole moment matrix element, which is an all the way decreasing function of ω0.



Chapter 4

Conclusions

In this work we have shown that the problem of finding the one-electron conduction states in a two-
dimensional disc-shaped quantum dot with parabolic confinement, under the combined influence of
an external magnetic field and an inverse square repulsive potential, has an exact analytical solution
in the effective mass approximation. According to the symmetry of the obtained eigenstates,
this particular potential energy configuration can be used to model the situation of parabolically
confined quantum rings in 2D via a suitable choice of the involved parameters.

We have taken advantage of the states and energies so calculated to evaluate the intersubband linear
and nonlinear contributions to the optical absorption coefficient as well as to the relative change
in the index of refraction in the system under study. The results obtained reveal that the influence
of the distinct input elements leads to different behaviors of these two quantities. In general, the
augmenting values of both the magnetic field intensity and the parabolic confining amplitude have
repercussions in the form of a blueshift of their resonant peaks. On the other hand, the increment
in the amplitude of the inverse square potential reflects in an increment of the peak intensities for
both coefficients. Finally, augmenting the intensity of the incident light, while remaining the other
input elements with fixed values, makes the contribution coming from the third-order nonlinear
terms to become more relevant, which causes an overall decrease in the resonant peak amplitudes
in both the optical absorption and the refractive index relative variations.

The geometry of the system we have considered and the presence of the magnetic field perpendicular
to the plane of the heterostructure makes this an excellent candidate for the calculation of other
properties in the system such as: i) the presence of persistent currents and their dependence on
geometry, which in this case by appropriate choice of the parameters of potential may be modulated
from quantum disks to narrow quantum rings through wide quantum rings, ii) the absorption
and photoluminescence spectra associated to magnetoexcitons, iii) the calculation of donor and
acceptor properties for impurities confined in the heterostructure, and finally, iv) the effects of
in-plane applied electric fields and hydrostatic pressure which can be used to amplify by several
orders of magnitude the amplitude of the resonant peaks associated with the different nonlinear
optical properties. Some of these works are currently under development and will be published
elsewhere.
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